SuperH RISC engine
C/C++ Compiler
Assembler
Optimizing Linkage Editor

User’'s Manud

HITACHI

Cautions

1

Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’ s sales office before using the product in an application that
demands especialy high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

This product is not designed to be radiation resistant.

No oneis permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

Contact Hitachi’ s sales office for any questions regarding this document or Hitachi
semiconductor products.

Preface

This manual explains how to use the C/C++ compiler, assembler, and optimizing linkage editor
for the SuperH RISC engine microcomputers. Please read this manual before using this system to
fully understand the system. This system translates source programs written in C/C++ language
or assembly source programs into rel ocatable object programs for the SuperH RISC engine
microcomputers.

This manual isintended for UNIX**, Microsoft” Windows® 95 operating system, Microsoft”
Windows® 98 operating system, Microsoft® Windows NT® operating system, and Microsoft®
Windows® 2000 operating system** that runs on an IBM PC**, and other compatible computers.

In this document, the system operating on a UNIX system isreferred to asthe UNIX version. The
system operating on IBM PC**° and other compatible computers are referred to as the PC version.

Noteson Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
<> Indicates an item to be specified.
[1 Indicates an item that can be omitted.

Indicates that the preceding item can be repeated.

A Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down while pressing the key
that follows.

Notes: 1. UNIX isaregistered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

2. Microsoft®, Windows’, and Windows NT® are registered trademarks of Microsoft
Corporation in the United States and other countries.

3. IBM PCisaregistered trademark of International Business Machines Corporation.

Rev. 1.0, 08/00, page i of vi
HITACHI

Contents

SECHON L OVEIVIBW ..ottt sttt sae e e nae s 1
1.1 Proceduresfor Developing Programs........cccceeiereninenie e s s 1
D o111 o 1 1= TSSO 3
1.3 ASSEMIDIEN ..t n e reere e 3
1.4 Optimizing Linkage EQITOr..........ccoiiiieeee et e 4
L5 PrEIINKES e 4
1.6 Standard Library GENEIAOr........cceeiueeiieiieeieesieesteeteeteeae e st e steesreesae e e reesre e beenreensesneess 4
17 StACK ANAIYSIS TOOL ... e e et s 5
1.8 FOIMat CONVENTENcooviiiriiiiitieieeee st e s 5
Section 2 CompPIler OPLIONS.......coeereerieeiesie et ee e neeas 7
21 Command LiNE FOIMELcccviuireeiiirineeisiisieesieseee st 7
2.2 LISt Of OPLIONS.....cuiieiiteriietieee ettt sttt st e h et se bbb e s ae st et e e et saesbenae e 7
221 SOUrCE Tah OPLIONS......coiriiieirterieeiieee ettt et s bt se et e b 7
222 ODJECt TAh OPLIONS.....cucuirieiiinieieririe ettt 10
2.2.3 LiSt Tah OPLiONS.ccciueiiirieieesieteserie ettt e 16
224 Optimize Tah OPLIONS.....coeeieiiierie ettt e e e 19
225 Other Tah OPLiONS........coceierierierieie e sb e s sae b saeeneen 23
2.2.6 CPU TaD OPLIONS.....eiiiieiireieieisieie sttt st enes 29
2.2.7 Options Other than ADOVE...........coeriiieriineee e e 36
Section 3 ASSEMDIEr OPLIONS......ccceeiieiieieree e 39
31 Command LiNE FOIMELcccviuireeiirrieeiesiineeesiesee st 39
3.2 LISt Of OPLIONS.....ccuiieiitirieeiieie ettt ettt et se e e e b bt ebe st e e e besee st e saesaeeaeens 39
3.21 SOUICE Tah OPLIONS......coieeeiieitestereeiee ettt sttt se s bbb se e e e be e sneas 40
3.2.2 ODJECt TaD OPLIONS....ccuiiueeterieeieeie ettt st sb et se b bbb e e nee e 44
323 LiSt T OPtioNS.....ccceiiieeieirieieierieiee st e 48
3.24 Other Tah OPLioNcc.ooiiieieeeeeee et e sb e e 53
325 CPU Tah OptioNS......ccooiueierieieririeieres ettt 54
3.2.6 Options Other than ADOVE.........cceiiiiieere e 58
Section4 Optimizing Linkage Editor OptionS..........cccecveeeveevesieese e 65
41 Option SPECITICALIONSc.eevireieetirieieieriee ettt bbb 65
411 Command LinNE FOIMELccvieeeeeeiereese e se e ie st ee e e st eneeneas 65
4.1.2 Subcommand File FOrMELcceoererieieeieeeereese s et nes 65
4.2 LISt Of OPLONS.....cuiitiiieiite ettt bbbt bbb b 65
421 INPUE TAD OPLIONS ..ottt bbb 66
4.2.2 OULPUL Tah OPLIONS.....cuiieeieiirieieierieeeriee ettt 71
423 Optimize Tad OPLiONS......cceiiirieiririere e 78
424 Section Tah OPLiONS......ccccoeeriiieiiieree et 84
425 Verify Tah OPLioNS.......ccooeieiriiiiiriieree e 86
426 Other Tal OPtiONS......ccoveiririeirereeere bbb 87

Rev. 1.0, 08/00, page ii of vi

HITACHI

427 Subcommand File OPtioN..........ccviieiriieirieereie e 93

Section5 Standard Library Generator Operating Methodcccccvevvvneee. 95
5.1 Option SPECITICAIIONScuviviriiieiirieieeriee e 95
5.2 OpPLioN DESCIHPLIONS.....c.ccviriiieiiriiieieriee sttt bbbt 95
521 Additional OPtiONS......coveieeiriiieiriiieesiee e 95
5.22 Options Not Available for Standard Library GEneratorc.coeeervereeerereenenn 97
5.2.3 Noteson Specifying OPLioNS.........cccvereirereiine st 99
Section 6 Operating Stack ANalySIS TOO!cceeviriinierieie e 101
B. 1 OVEIVIBIW ..ttt bbbt bbbt e b bt e bbb bt e bt et b b et e bt e 101
6.2 Starting the Stack ANalYSIS TOOcccoiiiiririeiieee e 101
6.3 Overview of the Stack AnalysiS TOOl FUNCLION.........cccooiiiiiiircee s 102
Section 7 Environment Variables...........cooeiiiiiiniininneee e 105
7.1 Environment Variabl €S LiSt.........ccoiieiiiiieieeeneesesee st 105
7.2 Compiler IMpliCit DECIArAION.couiiererieeeeieie et 108
Section 8 File SPECIfiCaliONS.......ccciiiiiieieee e 109
8.1 NAMING FIES ... et s b e bbb e e e 109
8.2 COMPIIEN LISHINGS. .. iueiiiieieisterie ittt sttt s bbbt e e et e b s sneennens 110
8.2.1 Structure of Compiler LiStiNGS.......cocerereririeieie st e 110
8.2.2 SOUICE LISHING ettt ettt bbb s sbe e 111
8.2.3 ODJECE LIStING.uteieiuirietiirieieisieiestresiee sttt 114
8.24 SHaliStiCS INFOrMALIONo.eeeieiieirieer e 116
8.25 Command Line SPeCIfiCatioNcocoviririiirieierie e e 117
8.3 ASSEMDIY LiStiNGS....eiiiiiieiticieee ettt sttt et e e e sreenaeenesnnesnne e 118
8.3.1 Structure of ASSEMBIY LiStiNg.....cccooiiiiiiiiirieeee e e 118
8.3.2 Source List INfOrmMation..........curirieirinieirieesies e 118
8.3.3 Cross REFErENCE LIStiNGcccvevieiieiiiee sttt sttt 121
8.3.4 Section INformation LiSting.........ccevieiiiieiie e 122
8.4 LiNKAGE LISHINGS.eeueeeeie ittt ettt sttt sttt ettt e bbb bt ee e e beseesbesaesaeeanens 123
8.4.1 Structure of Linkage LiStiNg.......cccveieeiieeieiiee ettt e 123
8.4.2 OptioN INFOIMELION. ..ot e 124
8.4.3 EITOr INFOMMELIONeveeiiieieeeeie et 124
8.4.4 Linkage Map INfOrMELioNccooeriiiiiiiie et s 125
8.45 Symbol INfOrMEaLIONccoveeieeece e e 126
8.4.6 Symbol Deletion Optimization INfOrmation...........ccoevererenerieeienese e 127
8.4.7 Variable Access Optimization Symbol INformation............ccceeeevenenenienieencnienn 128
8.4.8 Function Access Optimization Symbol INformationcccceevvienieeinnencniene 128
ST I 1o =V =] o PSR 128
8.5.1 Structure of Library LiStiNg......ccccoveiieiriie ettt s 128
8.5.2 Option INFOrMELION........coiiieiiiiieeeeee et e e 130
8.5.3 EIror INFOrMELIONcveeeiiiriieeecsieee e e 131
8.5.4 Library INfOrmation..........cooe i 131
8.5.5 Module, Section, and Symbol Information within Librarycccccoeeevinnnennne 132

Rev. 1.0, 08/00, page iii of vi
HITACHI

SECtioN 9 Programmmingcceeceeeeneniee e see e es e e e s sreenee e 133

0.1 Program SITUCIUIEcoiuiiieie ettt st e et sse e b b e anesneesreesbeesbeenas 133
.11 SECHOMS ..veueteieseteiees ettt et ettt e b 133
9.1.2 C/CH+ Program SECHIONS........ccceruerierueriererierieeieesiessesie s sre e eeeesse e saessesaesaesneens 133
9.1.3 Assembly Program SECLIONS.........coeiirireiierieieese st 136
9.1.4 JOINING SECHIONS ..ottt sttt st b b e e e bbb sbe s e ss e e e neesbesneas 138
9.2 Creation of Initial SEtting Programs.........ccoeeeeeeierierere e 142
9.21 MemMOrY AlIOCEIIONocueiueeieeeeieie ettt nee s 142
9.2.2 Execution ENVironmMent SEINGS.coerereriienieniesese s 150
9.3 Linking C/C++ Programs and Assembly Programs..........c.ccecererenenenieeneene e 179
9.3.1 Method for Mutual Referencing of External Names...........cocevereeeienencncncnens 180
9.3.2 Function Caling INtErfaCe..........ccccoieieiie i 182
9.3.3 Examplesof Parameter ASSIGNMENT.........cccoiireeiiriere st 192
9.34 Using the Registers and StaCk AT€a........cccuerereriirererieie et 195
9.4 Important Information 0N Programmingcccccoerererererieeie s s saeeeens 197
9.4.1 Important Information on Program Coding..........ccceeerererenerienene e 197
9.4.2 Important Information on Compiling a C Program with the C++ Compiler 201
9.4.3 Important Information on Program Development.............ccocevereerenenenenesenens 202
Section 10 C/C++ Language SPeCifiCatioNs..........cocereriereereniieseesiesee e 203
10.1 Language SPECITICALIONS..........eiuereeieeeerie ettt sttt e et e b e se e b e e e 203
10.1.1 Compiler SPECITICAIONS.....cc.ciuirieiteriereeie e bbb 203
10.1.2 Internal Data REPreSentalion.........ccoereeeeiierieriese et 211
10.1.3 Floating-Point Number SpeCifiCations..........ccovriierereriee e 225
10.1.4 Operator Evaluation OFOEScocoiiiirireneeiereese sttt 234
10.2 Extended SPECIfiCAlIONS......cciiiirireeeeeee sttt e 235
10.2.1 H#Pragma EXIENSION......cc.oiiiiie ettt e 235
10.2.2 INLFNSIC FUNCLIONS.......oeiireiieeeterieneeee et 251
10.3 C/CHT LIDIariES....ueeeeeieeieteeseee ettt 280
10.3.1 Standard C Libraries.........ooeeiereeenireeseseeese s 280
10.3.2 ECH+ Class LIBraries.ot s 427
10.3.3 ReENrant LIbraryccvccueeiiie sttt et e 513
10.3.4 Unsupported LiDraries.ottt 517
10.3.5 DSPLIBIAIY ..eoveeiieiieiisieie ettt 518
Section 11 Assembly SPeCifiCations..........ccocvvereeieiieesieie e 575
111 Program EIEIMENES ..ottt b et 575
11,01 SOUICE SEAEMENTS....cveeieeie e see s st ree ettt et et see s saeesreesaeeeeeneesneenseenes 575
11.1.2 RESEIVEA WOIGScoviieciecieceeeesees ettt sa et sre s e eneeneensenes 579
11,13 SYMDOIS ...ttt et et sttt b e e ebe e ere s 579
I R O 1 1T PP PRPSN 582
I oo 0 o 1 | = 591
11,16 EXPIESSIONS ...eeuectitieeiestesieiestesteestesteeebesteseebesbeseesesbeseeseebesbeseebesbe st ebesbeseenesbeseeneas 592
1117 SUING LITEIalS. .ottt s s sb e s 601
11.1.8 LOCE LADEL.....cciicicieeete ettt bbb 602

Rev. 1.0, 08/00, page iv of vi

HITACHI

11.2 EXECULADIE INSIIUCTIONS ... vveee et eeee ettt e e ettt e s st e s s et e e s seseeesssseeessesseessaseesesasseeesesrenesans 604

11.2.1 Overview of Executable INSITUCLIONScoveiiiieiriesee s 604
11.2.2 Noteson Executable INSIIUCLIONS.........covrviiiiriieerieeree s 610
TG T 1 o 1S o 1o SRS 633
11.3.1 Program CONTENES.ooeierirririeeieeeesres ettt sr e sn e e sr s ennens 633
11.3.2 DSP INSITUCHIONS.....ccteieieierieeeeeeesiesie e seeseeseeseeseeseesressesseeseessesessessessesseeseessessessens 637
11,4 ASSEMDIEr DIFECHIVES.....c.ecieieeiisiese st e see et e et e e sre st e eseeneessesteseestesneenneneens 645
115 FleINCIUSION FUNCLION........ciiiiiiieiiiie e 716
11.6 Conditional ASSEMDIY FUNCLIONc.oiiiiiiiiieirire e 719
11.6.1 Overview of the Conditional Assembly FUNCLIONccovrieirenciniecreeees 719
11.6.2 Conditional ASSEmblY DIiFECHIVES.......cccceriirieiiriireeirieesee e 725
T A Y - (o 1 U o 1 o PP 740
11.7.1 Overview of the Macro FUNCLIONcoouiiririiniriieeseees e 740
11.7.2 MaCro FUNCEION DIFECHIVES.....cc.eveieiieeeeeee e et nne s 742
11.7.3 MBCIO BOYc.eiueiiieiiitiieieiee ettt 745
A V= o SR 749
11.7.5 String Literal Manipulation FUNCLIONScooiriininincceeseeeseeeee s 751
11.8 Automatic Literal Pool Generation FUNCLIONccoueiiinieiininiecriieeseie e 755
11.8.1 Overview of Automatic Literal PoOl GENeration...........cceceveerereenenerienesesieennes 755
11.8.2 Extended Instructions Related to Automatic Literal Pool Generation.................. 756
11.8.3 Size Mode for Automatic Literal Pool Generation............ccoeevvvereeenenecnenieennes 756
11.8.4 Literal POOI OULPUL........c.ciirieiiriirieiriereecrie sttt 757
11.85 Literal SNariNg....ccceririeieriirieerieseeesiesee et 760
11.8.6 Literal POOI OULPUL SUPPIESSIONcovireeeiriiieiiriineeiesiesie s 761
11.8.7 Noteson Automatic Literal POOl GENErationcccooeveeerenieerineeierienieesieneens 762
11.9 Automatic Repeat Loop Generation FUNCHION.........c.ooeiririeinineeese e 764
11.9.1 Overview of Automatic Repeat Loop Generation FUNCLiON..........cccoceveererieenne, 764
11.9.2 Extended Instructions of Automatic Repeat Loop Generation Function.............. 765
11.9.3 REPEAT DESCIHPLION ...ttt 765
11.9.4 Coding EXAMPIEScouiiiieiiieseree e 766
11.9.5 Noteson the REPEAT Extended INStrUCtioNc.oovviveeniriiniccninecseneeeees 769
Section 12 Compiler Error MESSAgES.ccveeerieerieeiesieesieseesieseesseesseseesseenes 771
12.1 Error Message Format and Error LEVEIS ..o e 771
122 EITON IMESSAES.ccuveeiie ittt r ettt ettt sr e bt s e n e b e sb e e r e e e e s e nnenrennennennnen 771
12.3 Standard Library Error MESSAgES.......ccucevirieiririeiritnieie ettt 828
Section 13 Assembler Error MESSAgES.........ceviieerieeieeneerie e 831
13.1 Error Message Format and Error LEVEIScoviiiiiiiieeeece e 831
13.2 EXTON MESSAES. ...ccuteetieuieiie ettt s ettt et e b e st e e b e et e e e e s eesae e sae e sae e bt e b e eanesanesreesbeesbeesais 831
Section 14 Error Messages for the Optimizing Linkage Editorc.......... 851
14.1 Error Format and Error LEVEIS........ccoociiiiieiiire s 851
142 LiSt Of IMESSA0ES. .. eeeeiteiteeieeieee ettt sttt sttt st et b e s aeebe et e e seesbesbesbeebe e e e nbeseesbesaesaesnnens 851

Rev. 1.0, 08/00, page v of vi
HITACHI

Section 15 Error Messages for the Standard Library Generator

and Format Converter 865

15.1 Error Message Format and Error LEVEISooiiiiiiineee e e 865
15.2 EXTON MESSAGES. ... eeieieeieieieteest ettt sttt she e s ae et e et e st e s heesb e e s b e e sbeebe e e e smeesaeenbeebeenreanrenn 865
SECtioN 16 LIMITBLIONS.ccviiuiieieieeeeiesi e 869
16.1 Limitations of the COMPILEScoiiiiiee e e 869
16.2 Limitations of the ASSEMDIEN ..o 871
Section 17 Notes on Version Upgrade..........cceoveeereeresieeseenieseeseeseeseeseeeeens 873
17.1 NOteSON VErSON UPGratec.oiuireeuiriirieiiriisieirieseeesie sttt st 873
17.1.1 Guaranteed Program OPEratioN.........oeoeerereeereneeenieneeese st seeesseseeneas 873
17.1.2 Compatibility with Earlier VEersioncoccveveienennenenee e 874
17.1.3 Command-line INEErfaCE.......coiiriiiie e 875
17.1.4 Provided CONENES.......coiriiirierieiete ettt st st b e s b e s sbe e ere s 878
17.15 List File SPECITICatiONcovceriireciiie sttt 878

17.2 Additions and IMProVEMENESccceiriieiririereree st 879
17.2.1 Common Additions and IMProvVeMENtS..........c.ccveerereererieneeeseseeesre e 879

17.2.2 Added and Improved Compiler FUNCLIONS..........cccovirnenirieine e 879
17.2.3 Added and Improved Optimizing Linkage Editor FUNCtionS.........c.ccocevveninenne 880

17.3 Operating FOrmMat CONVEITEciirieiiirieirierieirie sttt 881
17.3.1 ObJECE FIIE FOMMELccveeeeeitereeiieie ettt s e sbe e 881
17.3.2 Compatibility with Earlier VErsions..........cccvereeneneenenecseneeese s 881
17.3.3 Command LiNE FOIMELcoieeririeieie ettt eene s 882
17.3.4 List OFf OPLIONS......ceiiiieirierieiete sttt st st st s be s ebe e 882
SECHiON 18 APPENAIX...cviiieiieeiieeieseeseeieseesteeee s e e sae e e sreeeesse e aeeeesreenneeneens 885
18.1 STypeand HEX Fil@ FOIMAEL..........cccooiiireiriirieinieneec sttt 885
18.1.1 S TYPEFIEFOIMEAL ..ottt eene 885

18.1.2 HEX Fil@ FOIMELc.ciuiieeirieieterieiete ettt b et b e s sb e s ere s 887

18.2 ASCI COUE LISt . eeuieetrieririeireeieiesiste sttt te e te e se e e se e s seneseeseneseesenessenes 889

Rev. 1.0, 08/00, page vi of vi

HITACHI

Section1 Overview

11 Proceduresfor Developing Programs

Figure 1.1 shows the procedures for devel oping programs. The shaded part shows software
provided in the SuperH RISC engine C/C++ compiler package.

The C/C++ compiler, assembler, optimizing linkage editor, standard library generator, stack
analysistool, and format converter are explained in this manual.

Rev. 1.0, 08/00, page 1 of 890
HITACHI

User

User
include
file

C/C++
source file

\ 4 y

SuperH RISC engine
C/C++ compiler

Standard
include

———>»| Additional

il information
e ok
A file*1
User Assembl Prelinker :
assembly source y A SuperH RISC engine
' standard library generator
program program forary 9
Y
N
N
SuperH RISC engine Relocatable
assembler object Standard
file torary
/ ~—_Tle ~
SYSROF Optimizing < > User
object/ Linkage editor library
library y
N~
v 4
ELF/DWARF
format <€—| Load Profile Stack
converter module information information
T Y
SYISRdOF Debugger Stack analysis tool
oal
module module
Note: —>» : Input/output
------ » : Initiation
Called
Additional information file includes: information

- Template information files

- Parameter information files

- Instance information files

-Tentative defined variable information files

Figure 1.1 Proceduresfor Developing Programs

Rev. 1.0, 08/00, page 2 of 890
HITACHI

田神 憲一
DSP

田神 憲一

田神 憲一

田神 憲一
ELF

田神 憲一

Outlines of the C/C++ compiler, assembler, optimizing linkage editor, prelinker, standard library
generator, stack analysistool, and format converter are given in the following instructions.

12 Compiler

The SuperH RISC engine C/C++ compiler (hereinafter referred to as compiler) is software that
takes source programs written in C or C++ language as inputs, and produces relocatabl e object
programs or assembly source programs for SuperH RISC engine microcomputers.

Features of this compiler are as follows:

1. Generates an object program that can be written to ROM for installation in a user system.

2. Supports an optimization that improves the speed of execution of object programs and
minimizes program size.

3. Supportsthe C and C++ programming languages .

4. Supports functions that are essential for the programming of embedded programs but are not
supported by the C and C++ languages as extended functions. Such functions include interrupt
functions and descriptions of system instructions.

5. Theoutput of debugging information to enable C/C++ source-level debugging by the debugger
is supported.

6. Either an assembly source program or arelocatable object program can be selected for output.

7. Supports an inter-module optimization information output to execute optimization for the
optimizing linkage editor.

1.3 Assembler

The SuperH RISC engine assembler (hereinafter referred to as assembler) takes source programs
written in assembly language, and outputs relocatabl e object programs for SuperH RISC engine
microcomputers.

Features of this assembler are as follows:

1. Enablesthe efficient writing of source programs by providing the preprocessor functions
listed below:

O Fileinclude function
O Conditional assembly function
O Macro function

2. The mnemonics for execution instruction and assembly directives conform to the naming rules
laid out in the IEEE-694 specifications, and the system is uniform.

Rev. 1.0, 08/00, page 3 of 890
HITACHI

14 Optimizing Linkage Editor

The optimizing linkage editor is software that takes multiple object programs output by the
compiler or assembler and produces load modules or library files.

Features of this optimizing linkage editor are as follows:

1. Optimization can be applied to a set of severa object files, depending on memory alocation
and relations among function calls which cannot be optimized by the compiler.

2. Any of the following five types of load modules can be selected for output:
O Relocatable ELF format

O Absolute ELF format

O Stypeformat

0 HEX format

O Binary format

Generates and editslibrary files.

Outputs symbol reference count list.

Deletes debugging information from library and load module files.

Specifies the output of a stack information file for use by the stack analysistool.

IS L

1.5 Prelinker

Theis caled from the optimizing linkage editor. When a C++ program template or runtime type-
detection function is used, the prelinker calls the compiler and instructs it to generate the
necessary object files. When neither a C++ program template nor the runtime type-detection
function is used, the speed of linkage can be improved by specifying the noprelink option for the
optimizing linkage editor.

16 Standard Library Generator

The SuperH RISC engine standard library generator (hereinafter referred to as the standard library
generator) is a software system for the reconfiguration of standard library files provided, using
user-specified options.

The standard library functions provided with the compiler include the standard set of C library
functions, a set of C++ class library functions for embedded systems, and a set of runtime routines
(arithmetic operations that are necessary for the execution of a program). In some cases, runtime
routine will be necessary, even though the use of library functions in source programs has not been
specified.

Rev. 1.0, 08/00, page 4 of 890
HITACHI

17 Stack Analysis Tool

The stack analysistool is software that takes the stack information file that is output by the
optimizing linkage editor and calculates the size of the stack that will be used by C/C++ programs.

1.8 Format Converter

The ELF/DWARF format converter (hereinafter referred to as format converter) takes object files
and library files that have been output by an earlier version of the compiler or assembler and
converts them to the EL F format. It can also take an ELF-format absolute load module and convert
it to the output format of the earlier version of the linkage editor.

Rev. 1.0, 08/00, page 5 of 890
HITACHI

Rev. 1.0, 08/00, page 6 of 890
HITACHI

Section 2 Compiler Options

2.1 Command Line Format
The format of the command line to initiate the compiler is asfollows:
shc[A<option>...][A<file name>[A<option>...] ...]
<opti on>: - <opti on>[=<suboption>][,...]
2.2 List of Options

In the command line format, uppercase |etters indicate the abbreviations. Characters underlined
indicate the defaults.

The format of the dialog menus that correspond to Hitachi Embedded Workshop is as follows:
Tab name [Item]

Options are described in the order corresponding to tabsin Hitachi Embedded Workshop.

221 Source Tab Options

Table2.1 SourceTab Options

Iltem Command Line Format Dialog Menu Specification
Include file Include = <path name>[,...] Source Specifies include-file search
directory [Show entries for:] path name.
[Include file directories]
Default PREInclude = Source Includes the specified files at
include file <file name>[,...] [Show entries for:] the head of compiled files.
[Preinclude files]
Macro name DEFine = <sub>[,...] Source Defines <string literal> as
definition <sub>: [Show entries for:] <macro name>.
<macro name> [Defines]

[=<string literal>]

Rev. 1.0, 08/00, page 7 of 890
HITACHI

Include
Source[Show entries for:][Includefile directories)]

e Command Line Format
Include = <path name>[,...]

» Description
Specifies the name of the path where the include file is stored. Two or more path names can
be specified by separating them with acomma (,). System include files areretrieved in the
order of the include option specification directory, the environment variable SHC INC
specification directory, and the environment variable SHC_LIB specification directory. User
include files are retrieved in the order of the current directory, the include option specification

directory, the environment variable SHC_INC specification directory, and the environment
variable SHC_LIB specification directory.

» Example
shc -include=/usr/inc,/usr/SHC test.c
Directories /usr/inc and /usr/SHC are retrieved as include file paths.

PREInclude
Source[Show entries for:][Preinclude files]

e Command Line Format
PREInclude = <file name>[,...]
o Description
Includes the specified file at the head of the compiled files. Two or more path names can be
specified by separating them with acomma (,).
» Example
shc -preinclude=a.h test.c
0 Contents of <test.c>
int a;
main(){...}
O Interpretation at compilation
#i ncl ude "a. h"
int a;

main(){...}

Rev. 1.0, 08/00, page 8 of 890
HITACHI

DEFine
Source[Show entries for:][Defines]

e Command Line Format
DEFine = <sub> [,...]
<sub>: <macro name> [= <string literal>]
» Description
This option is the same as #define described in the C/C++ sourcefile.
When <macro name>=<string literal> is specified, <string literal> is defined as a macro
name.

When only <macro name> is specified for a suboption, the macro name is assumed to be
defined. Names or integer constants can be written in <string literal>.

Rev. 1.0, 08/00, page 9 of 890
HITACHI

222 Object Tab Options

Table2.2 Object Tab Options

Iltem Command Line Format Dialog Menu Specification
Pre- PREProcessor Object Outputs source program after
processor [= <file name>] [Output file type:] preprocessor expansion.
expansion [Preprocessed source
file]
Object type Code = Object
[Output file type:]
{ Machinecode [Machine code] Outputs machine code program.
| Asmcode } [Assembly source code] Outputs assembly-source
program.
Debugging DEBug Object Output
information NODEBuUg _[GeneraFes debug Not output
information]

Section SEction = <sub>[,...] Object
name <sub>:{ [section:]

Program=<section name> [Program section (P)] Program area section name

| Const=<section name> [Const section (C)] Constant area section name

| Data=<section name> [Data section (D)] Initialized data area section name

| Bss=<section hame> [Uninitialized data Non-initialized data area section

} section (B)] name
Area of STring = { Const Object Outputs string literal to constant
string literal [Store string data in:] section (C).
to be output | Data } Outputs string literal to initialized

data section (D).

Object file OBjectfile = <file name> Object Outputs the object file of the
output [Output directory:] specified file name.

Rev. 1.0, 08/00, page 10 of 890
HITACHI

Table2.2 Object Tab Options (cont)

Iltem Command Line Format Dialog Menu Specification
Template Template={ None Object Does not generate instances.
instance [Template:]
generation | Static Generates instances as internal
linkage only for referenced
templates.
| Used Generates instances as external
linkage only for referenced
templates.
| ALI Generates instances for templates
declared or referenced.
|,AUto } Generates instances at linkage.
ABS16 ABs16={ RUn Object Assumes all runtime routines to
declaration [Use 16 bit short have been declared with #pragma
address] abs16.

| ALI'}

Generates all label addresses in
16 bits.

PREPT ocessor

Object[Output file type:][Preprocessed source fil€]

e Command Line Format

PREProcessor [= <file name>]

o Description

Outputs source program processed by the preprocessor.

If no <file name> is specified, an output file with the same file name as the source file and
with a standard extension is created. The standard extension after C compilation is p (if the
input source program iswritten in C), and that after C++ compilation is pp (if the input source

program iswritten in C++).

When preprocessor is specified, no object fileis output from the compiler.

 Remarks

When preprocessor is specified, the following options becomeinvalid:

code, debug, section, string, object, template, absl6, show=object, statistics, optimize,
speed, goptimize, nestinline, inline, case, macsave, align16, rtnext, loop, fpscr, cpu,
division, endian, fpu, round, denor malization, pic, double=float, exception, rtti, and

outcode.

HITACHI

Rev. 1.0, 08/00, page 11 of 890

Code

Object[Output file type:] [Machine code] [Assembly source code]

Command Line Format

Code = { Machinecode | Asmcode }

Description

Specifies an object program type.

When code=machinecode is specified, a relocatable object program (machine code) is
generated.

When code=asmcode is specified, an assembly source program is generated.

The default of this option is code=machinecode.

Remarks

When code=asmcode is specified, show=object or goptimize becomesinvalid.

DEBug, NODEBug

Object[Generate debug information]

Command Line Format

DEBug

NODEBug

Description

Specifies whether to output the debugging information needed for source-level debugging into
object files.

This option is valid whether or not the optimization option is specified.

The debug option outputs the debugging information into object files.

When nodebug option is specified, no debugging information will be output to the object file.
The default of this option is nodebug.

Rev. 1.0, 08/00, page 12 of 890

HITACHI

SEction

Object[Section:] [Program section (P)] [Const section (C)] [Data section (D)]
[Uninitialized data section (B)]

e Command Line Format
SEction = <sub> [,...]
<sub>: { Program=<section hame>
| Const= <section name>
| Data= <section name>
| Bss= <section name>
}
» Description
Specifies the section name of an object program.
section=progr am=<section name> specifies the section name in the program area.
section=const=<section name> specifies the section name in the constant area.
section=data=<section name> specifies the section namein the initialized data area.
section=bss=<section name> specifies the section name in the non-initialized data area.

The <section name> must be alphabetic, numeric, or underscore () or $. Thefirst character
must not be numeric. The section name must be specified within 8192 characters.

The default of this option is section=program=P, const=C, data=D, bss=B.
* Remarks
For details on programs and section names, refer to section 9.1, Program Structure.

Rev. 1.0, 08/00, page 13 of 890
HITACHI

STring

Object[Store string datain:]

Command Line Format

STring = { Congt | Data}

Description

Specifies the destination where string literals are output.

When string=const is specified, the compiler outputs the string literals in the source program
to the constant area.

When string=data is specified, the compiler outputs the string literals in the source program to
theinitialized data area.

The string literals output to the initialized data area can be modified at the program execution;
however, the initialized data area must be allocated in both ROM and RAM in order to transfer
the string literals to RAM from ROM at the beginning of program execution. For detailson
theinitial settings of the initialized data area or on memory allocation, refer to section 9.2.1
Memory Allocation.

The default of this option is string=const.

OBjectfile

Object[Output directory:]

Command Line Format

OBjectfile = <object file name>
Description

Specifies an object file name to be output.

If this option is not specified, the object file name body becomes the same as that of the source
file and the extension becomes obj for a relocatable object program and src for an assembly
source program, which is determined by code.

Rev. 1.0, 08/00, page 14 of 890

HITACHI

Template

Object[Template:]

Command Line Format
Template = { None
| Static
| Used
| ALI
| AUto}
Description
Specifies the condition to generate template instances.
When template=none s specified, instances are not generated.

When template=static is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the internal linkage.

When template=used is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the external linkage.

When template=all is specified, instances of all templates declared or referenced in the
compiling unit are generated.

When template=auto is specified, instances needed at linkage are generated.

Remarks

When an assembly source fileis output, template=static must be specified.

ABsl16

Object[Use 16 bit short address]

Command Line Format

ABs16={ RUn|ALI}

Description

absl6=run assumes all the runtime routines to have been declared with #pragma absl6.
absl6=all generates every label addressin 16 bits.

Rev. 1.0, 08/00, page 15 of 890
HITACHI

223 List Tab Options

Table2.3 List Tab Options

Item Command Line Format Dialog Menu Specification
Listing file Listfile [= <file name>] List Output
NOListfile [Generate list file]Not output
Listing SHow = <sub> [,...] List
contents g p>: { [Contents]
and format
SOurce | NOSOurce With/without source list
| Object | NOObject With/without object list
| STatistics | NOSTatistics With/without statistics information
| Include | NOlnclude With/without list after include expansion
| Expansion | NOExpansion With/without list after macro expansion
| Width = <numeric value> Maximum characters per line:
0 or 80 to 132
| Length = <numeric value> Maximum lines per page:

0 or 40 to 255

Listfile, NOListfile

List{Generate list file]

Command Line Format

Listfile [= <file name>]

NOLidtfile

Description

Specifies whether alisting file is output or not.

When listfile is specified, afile name can be specified.

When nolistfile is specified, alisting file will not be output.

File names should be specified following section 8.1, Naming Files.

If no file name is specified, alisting file with the same name as the source file and a standard
extension (lig/1st/Ipp) is created. The standard extension for UNIX versionislis, that for PC
version at C compilation islst, and that for PC version at C++ compilation isIpp.

The default of this option is nolistfile.

Rev. 1.0, 08/00, page 16 of 890

HITACHI

SHow

List[Contents]
¢ Command Line Format

SHow= <sub>[,...]
<sub>:{ SOurce | NOSOurce
| Object | NOObject
| STatistics | NOSTatistics
| Include | NOlnclude
| Expansion | NOExpansion
| Width= <numeric value>
| Length= <numeric value>
}
e Description
Specifies the contents and format of the list output by the compiler, and the cancellation of list
output. For examples of each list in this section, refer to section 8.2, Compiler Listings.
The default of this option is show=nosour ce, object, statistics, noinclude, noexpansion,
width=0, length=0.
* Remarks
Table 2.4 shows alist of suboptions.

Rev. 1.0, 08/00, page 17 of 890
HITACHI

Table2.4 List of Suboptions of show Option

Suboption Description

source Outputs a list of source programs

nosource Outputs no list of source programs

object Outputs a list of object programs

noobject Outputs no list of object programs

statistics Outputs a list of statistics information

nostatistics Outputs no list of statistics information

include Outputs a source program list after include file expansion. If the
nosource suboption and the include suboption are specified, the
include suboption will be invalid, and no source program list will be
output to a file.

noinclude Outputs a source program list before include file expansion. If the
nosource suboption is and the noinclude suboption are specified, the
noinclude suboption will be invalid, and no source program list will be
output to a file.

expansion Outputs a source program list after macro expansion. If the nosource

suboption and the expansion suboption are specified, the expansion
suboption will be invalid, and no source program list will be output to a
file.

noexpansion

Outputs a source program list before macro expansion. If the
nosource suboption and the noexpansion suboption are specified,
the noexpansion suboption will be invalid, and no source program list
will be output to a file.

width=<numeric value>

The number specified by <numeric value> is set as the maximum
number of characters in a single line of a list. The <numeric value>
can specify decimal numbers from 80 to 132 or 0.

If <numeric value> is specified as 0, the maximum number of
characters in a single line is not specified.

length=<numeric value>

The number specified by <numeric value> is set as the maximum
number of lines on a single page of a list. The <numeric value> can
specify decimal numbers from 40 to 255 or 0.

If <numeric value> is specified as 0, the maximum number of lines on a
single page of a list is not specified.

Rev. 1.0, 08/00, page 18 of 890

HITACHI

224 Optimize Tab Options
Table25 Optimize Tab Options
Command Line
Item Format Dialog Menu Specification
Optimization OPtimize = {0 Optimize Outputs object without optimization.

[Optimization]

Outputs object with optimization.

|1}
Optimized for
speed
SPeed
Slze
NOSPeed

Optimize

[Speed or size:]
[Optimize for speed]
[Optimize for size]

[Optimize for both
speed and size]

Performs optimization for speed.

Performs optimization for program
size.

Performs balanced optimization
between execution speed and
program size.

Inter-module Goptimize
optimization
information

Optimize
[Generate file for
inter-module
optimization:]

Outputs information for inter-module
optimization.

Nested inline NEstinline = Optimize Specifies the depth of nesting in inline
expansion <numeric value> [Inline function function expansion.
nesting]

Automatic INLine Optimize Performs inline expansion
inline [= <numeric value>] [Automatic inline automatically.
expansion NOINLine expansion] Does not perform inline expansion

automatically.
switch CAse = { Ifthen Optimize Expands by if_then method.
statement | Table } [Switch statement] gynands by jumping to a table.
expansion
method

HITACHI

Rev. 1.0, 08/00, page 19 of 890

OPtimize

Optimize[Optimization]

Command Line Format

OPtimize={ 0|1}

Description

Specifiesthe level of compiler optimization.

When optimize=0 is specified, the compiler does not optimize the object program.
When optimize=1 is specified, the compiler optimizes the object program.

The default of this option is optimize=1.

SPeed, Slze, NOSPeed

Optimize[Speed or size]

Command Line Format

SPeed

Slze

NOSPeed

Description

When speed is specified, the compiler performs optimization with priority in execution.

When sizeis specified, the compiler performs optimization with priority in program size.

If nospeed is specified, the compiler performs balanced optimization between execution speed
and program size.

The default of this option is nospeed.

Goptimize

Optimize[Generate file for inter-modul e optimization]

Command Line Format

Goptimize

Description

Outputs the additional information for the inter-modul e optimization.

For the file specified with this option, the inter-module optimization is performed at linkage.

Rev. 1.0, 08/00, page 20 of 890

HITACHI

NEstinline

Optimize[Inline function nesting]

Command Line Format
NEstinline=<numeric value>
Description

Specifies the depth of nesting in inline expansion functions. Up to 16 can be specified. The

default of thisoption is nestline=1.

Example

Source program
#pragma inline(funl, fun2, fun3)
extern int dat;
void funl(){a++;}
void fun2(){funl();}
void fun3(){fun2();}

(2) Inline expansion image for nestinline=1
#pragma inline(funl, fun2, fun3)
extern int dat;
void funl(){a++;}
voi d fun2(){a++;}
void fun3(){funl();}

(2) Inline expansion image for nestinline=2

#pragma inline(funl, fun2, fun3)
extern int dat;
void funl(){a++;}
voi d fun2(){a++;}
voi d fun3(){a++;}

HITACHI

Rev. 1.0, 08/00, page 21 of 890

INLine, NOINLine

Optimize[Automatic inline expansion]

Command Line Format

INLine=<numeric value>

NOINline

Description

Specifies whether to automatically perform inline expansion of functions.

When inline is specified, the compiler automatically performsinline expansion.
inline=<numeric value> specifies the maximum number of nodesin afunction (total number
of words such as variables and operators except for the declarations) against which inline
expansion should be performed.

When noinlineis specified, inline expansion is not performed.

If speed is specified, the default of this option isinline=20. If the nospeed, size, or
optimize=0 is specified, the default is noinline.

CAse

Optimize[Switch statement:]

Command Line Format

CAse={ Ifthen | Table}

Description

Specifies a switch statement expansion method.

When case=ifthen is specified, switch statement is expanded using the if _then method, which
repeats, for each case label, comparison between the evaluated value of the expression in the
switch statement and the case label value. If they match, execution jumpsto the statement of
the case labedl if they match. This method increases the object code size depending on the
number of case labelsin the switch statement.

When case=tableis specified, switch statement is expanded using the table method, which
stores the case label jump destinations in ajump table and enables ajump to the statement of
the case label that matches the expression in the switch statement by accessing the jump table
only once. This method increases the jJump table size in the constant area depending on the
number of case labelsin the switch statement, but the execution speed is always the same.

If this option is not specified, the compiler automatically selects one of the methods for
expansion.

Rev. 1.0, 08/00, page 22 of 890

HITACHI

225 Other Tab Options

Table2.6 Other Tab Options

Command Line

Iltem Format Dialog Menu Specification

Embedded ECpp Other Checks syntax according

C++ language [Miscellaneous options:] to the Embedded C++
[Check against EC++ language language specifications.
specification]

Comment COMment = Other

nesting { Nest [Miscellaneous options:] Permits comment (/* */)
[Allow comment nest] nesting.

| NONest } Does not permit comment
(/* */) nesting.

Message MEssage Other Outputs information

output [Miscellaneous options:] message.

control NOMEssage [Display information level messages] Does not output

information message.

MAC register

Macsave = {0

Other

[Miscellaneous options:]

[Callee saves/restores MACH and
MACL registers if used]

Does not guarantee the
MAC register contents
after a function is called.
Guarantees the MAC
register contents after a
function is called.

16-byte
alignment of
labels

ALign16

NOALign16

Other

[Miscellaneous options:]

[Align Labels after unconditional
branches 16byte boundaries]

Labels placed
immediately after an
unconditional branch
instruction other than a
subroutine call in a
program section is
aligned on a 16-byte
boundary.

Does not necessarily
place labels on a 16-byte
boundary.

Rev. 1.0, 08/00, page 23 of 890

HITACHI

Table2.6 Other Tab Options (cont)

Command Line

Item Format Dialog Menu Specification
Extension of RTnext Other Creates a sign-extension
return value [Miscellaneous options:] or zero-extension of the
[Expand return value to 4 byte] return value
NORTnext Creates no sign-

extension or zero-
extension of the return

value
Loop unroll LOop Other Performs loop unrolling.
NOLOop [Miscellaneous options:] Does not perform loop
[Loop unrolling] unrolling.
FPSCR FPScr = Other Switches the FPSCR
register { Safe [Miscellaneous options:] register whenever a
switch [Change FPSCR register if double double operation is
data used] generated.
| Aggressive Inhibits switching FPSCR

as much as possible.

ECpp

Other [Miscellaneous options:] [Check against EC++ language specification]

Command Line Format

ECpp

Description

The compiler checks the syntax of the C++ source program according to the Embedded C++
language specifications. The Embedded C++ specifications do not support such keywords as
catch, const_cast, dynamic_cast, explicit, mutable, namespace, reinterpret_cast, static_cast,
template, throw, try, typeid, typename, and using. Therefore, if these keywords are written in
the source program, the compiler will output an error message.

Remarks

The Embedded C++ language specifications do not support a multiple inheritance or virtual
base class. If amultipleinheritance or virtual base class isin the source program, the compiler
will display warning message "C5882 (W) Embedded C++ does not support multiple or virtual
inheritance" at compilation. A compiler generating object program at the output of the
warning message C5882 is the same as that without the ECpp specified.

Rev. 1.0, 08/00, page 24 of 890

HITACHI

COMment
Other [Miscellaneous options:] [Allow comment nest]

e Command Line Format

COMment={ Nest | NONest}
» Description

Allows nested comments to be written in the source program.

When this option is not specified, and if nested comments are written, an error will occur.
» Example

/* This is an exanple of/* nested */ conment */

1

@

When comment=nest is specified, the compiler handles the above line as a nested comment;
however, when the option is not specified, the compiler assumes (1) as the end of the
comment.

M Essage, NOM Essage
Other[Miscellaneous options:] [Display information level messages]

e Command Line Format
MEssage
NOM Essage
» Description
Specifies whether to output information-level messages.
If message is specified, the compiler outputs information-level messages.
If nomessage is specified, the compiler does not output information-level messages.
The default of this option is nomessage.
» Example
shc —nessage test.c
Information-level messages will be displayed.

Rev. 1.0, 08/00, page 25 of 890
HITACHI

M acsave

Other [Miscellaneous options:]
[Callee saves/restores MACH and MACL registersif used]

« Command Line Format
Macsave={ 0|1}

» Description
Specifies whether or not to the contents of the MACH and MACL registers before afunction
call are guaranteed or after the function call.

When macsave=0 is specified, the contents of the MACH and MACL registers before a
function call are not guaranteed or after the function call.

If macsave=1 is specified, the contents of the MACH and MACL registers before afunction
call are guaranteed or after afunction call.

Functions compiled under macsave=0 cannot be called from functions compiled under
macsave=1. On the contrary, functions compiled under macsave=1 can be called from
functions compiled under macsave=0.

The default of this option is macsave=1.

Rev. 1.0, 08/00, page 26 of 890
HITACHI

ALign16, NOALign16

Other [Miscellaneous options:] [Align Labels after unconditional branches 16byte boundaries)

Command Line Format

ALignl6

NOALignl6

Description

When align16 is specified, every label within the program section that is placed immediately
after an unconditional branch instruction except for subroutine call is aligned on a 16-byte
boundary.

When noalign16 is specified, 16-byte alignment of labels that are placed immediately after an
unconditional branch instructionsis not performed.

The default of this option is noalign16.

RTnext, NORTnext

Other [Miscellaneous options:] [Expand return value to 4 byte]

Command Line Format

RTnext

NORTnext

Description

Specifies whether to perform sign/zero extension of afunction return value in register RO

againgt areturn statement that returns an (unsigned) char type or (unsigned) short type value.
This option need not be specified if function prototype is declared.

When rtnext is specified, sign/zero extension of the function return value is performed.
When nortnext is specified, sign/zero extension of the function return value is not performed.
The default of this option is nortnext.

Rev. 1.0, 08/00, page 27 of 890
HITACHI

LOop, NOLOop

Other [Miscellaneous options:] [Loop unrolling]

Command Line Format

LOop

NOL Oop

Description

Specifies whether to perform loop unrolling.

When loop is specified, priority is given to execution speed in compiling loop statements (for,
while, and do-while).

When noloop is specified, priority is not given to execution speed in compiling loop
Statements.

The default of this option isnoloop.

FPScr

Other [Miscellaneous options:] [Change FPSCR register if double data used]

Command Line Format

FPScr = { Safe
| Aggressive }
Description

Specifies single or double precision mode for the FPSCR register when executing float or
double operation in SH-4.

When fpscr=safe is specified, the compiler switches the FPSCR register to double precision
mode every time the SH-4 performs double operation. After the SH-4 completes double
precision operation, the compiler switches the register to single precision mode. In this case,
the compiler always switches the FPSCR register to single precision mode after returning from
afunction call.

When fpscr=aggressive is specified, the compiler tries not to change the FPSCR register very
often. In this case, the contents of the FPSCR register are not guaranteed in the single precision
mode after returning from afunction call.

This option is valid without fpu=single or fpu=double when cpu=sh4.

The default of this option isfpscr=aggressive.

Rev. 1.0, 08/00, page 28 of 890

HITACHI

226

CPU Tab Options

Table2.7 CPU Tab Options
Iltem Command Line Format Dialog Menu Specification
CPU operating CPu = CPU
mode {sh1l [CPU] Generates SH-1 object.
| sh2 Generates SH-2 object.
| sh2e Generates SH-2E object.
| sh Generates SH-3 object.
| sh3e Generates SH-3E object.
| sh4} Generates SH-4 object.
Division Division = CPU
operation { Cpu [Division:] Uses CPU's division
[SH-2] instruction.
| Peripheral Uses a divider (with
masking interrupt).
| Nomask } Uses a divider (without
masking interrupt).
Byte order ENdian ={ Big CPU Specifies big endian.
[SH-3 to SH-4] | Little } [Endian’] Specifies little endian.
FPU FPu= CPU
[SH-4] { Single [FPU:] Processes floating-point
operation in single
precision.
| Double } Processes floating-point
operation in double
precision.
Rounding Round= { Zero CPU Rounds to zero.
direction | Nearest } [Round to:] Rounds to nearest.
[SH-4]
Denormalized DENormalization= { OFF CPU Processes denormalized
numbers [Denormalized number numbers as zeros.
[SH-4] Processes denormalized

| ON }

allower as a result]

numbers as they are.

HITACHI

Rev. 1.0, 08/00, page 29 of 890

Table2.7 CPU Tab Options (cont)

Item Command Line Format Dialog Menu Specification

Program section Pic={0
position

independent

[SH-2 to SH-4] (1}

CPU Generates no position

[Position independent code ndependent codes for

(PIC)] the program section.
Generates position
independent codes for
the program section.

double to float DOuble=Float CPU Handles a double-type
conversion [Treat double as float] variable as a float-type
[SH-1 to SH-3E] variable.

Exception EXception Other Enables exception
processing [Miscellaneous options:] processing function

NOEXception

[Use try, throw and catch OfDisabIes exception

C++] processing function.

Runtime type RTTI={ON

CPU Enables dynamic_cast

information [Enable/disable runtime and typeid.
| OFF } information] Disables.dynamic_cast
and typeid.
CPu
CPU[CPU]
e Command Line Format
Chu= {shl
| sh2
| sh2e
| sh3
| sh3e
| sh4
}

» Description

Specifies the CPU type for the object program to be generated. Suboptions are listed in

table 2.8.
The default of this option is cpu=shl.

Rev. 1.0, 08/00, page 30 of 890

HITACHI

Table2.8 Suboptionsfor cpu Option

Suboption Description

shl Generates SH-1 object.
sh2 Generates SH-2 object.
sh2e Generates SH-2E object.
sh3 Generates SH-3 object.
sh3e Generates SH-3E object.
sh4 Generates SH-4 object.

Rev. 1.0, 08/00, page 31 of 890
HITACHI

Division

CPU[Division:]

e Command Line Format
Divison= { Cpu

| Peripheral
| Nomask
}

e Description
Selects runtime routines for integer type division and residue.
When division=cpu is specified, the runtime routine by the DIV 1 instruction is selected.

When division=peripheral is specified, the runtime routine that uses the divider is selected
(Setsinterrupt mask level to 15.) Executable only if cpu typeis SH-2 (SH7604).

When division=nomask is specified, the runtime routine that uses the divider is selected. (No
change in interrupt mask level.) Executable only if cpu typeis SH-2 (SH7604).

When specifying peripheral or nomask, note the following:

1.
2.

Division by 0 is not checked and errno is not set up.

When nomask is specified, if an interrupt occurs during operation of the divider, and if the
divider is used in the interrupt process routine, the result is not guaranteed.

Overflow interrupt is not supported.

Results of division by zero and overflow depend on specifications of the divider, and may
differ from the results obtained when cpu is specified.

The default of this option is division=cpu.

ENdian

CPU[Endian:]

e Command Line Format
ENdian ={ Big | Little}

» Description
When endian=big is specified, data bytes are arranged in the Big Endian order.
When endian=littleis specified, data bytes are arranged in the Little Endian order.
Little endian object programs do not run on SH-1, SH-2, and SH-2E.
The default of this option is endian=big.

Rev. 1.0, 08/00, page 32 of 890

HITACHI

FPu
CPU[FPU]

e Command Line Format
FPu={ Single| Double}

» Description
When fpu=singleis specified, al floating point calculations are carried out at single precision.
When fpu=doubleis specified, all floating point calculations are carried out at double
precision.
Specify fpu=single if floating point calculations are not used in the program.
This option is valid when cpu=sh4.

Round
CPU[Round to:]

* Command Line Format
Round ={ Zero | Nearest }

» Description
When round=zero is specified, values are rounded to zero.
When round=nearest is specified, values are rounded to nearest.
This option is valid when cpu=sh4.
The default of this option isround=zero.

DENormalization
CPU[Denormalization number allower as a result]

» Command Line Format
DENormalization = { OFF | ON }

e Description
When denor malization=off is specified, denormalized numbers are treated as zeros.
When denor malization=on is specified denormalized numbers as treated as they are.
This option is valid when cpu=sh4.
The default of this option is denor malization=off.

Rev. 1.0, 08/00, page 33 of 890
HITACHI

Pic
CPU[Position independent code (PIC)]

e Command Line Format
Pic={0]1}

» Description
When pic=1 is specified, a program section after linking can be alocated to any address and
executed. A data section can only be allocated to an address specified at linking. When using
this option as a position independent code, a function address cannot be specified as an initial
value. At C++ compilation, a pointer to avirtual function or function member requires a
function address asthe initial value. Therefore, C++ programs containing virtual functions and
pointers to member functions cannot be executed as position independent codes.

* Examples

Example 1

externint f ();

int (*fp)() = f; <-- Cannot be specified
Example 2

struct A {virtual void f();}; <--Cannotbe specified
void (A:*ap)() = &A: : f; <-- Cannot be specified
Note that if cpu=shl is specified, pic=1 isignored.

The default of this option is pic=0.

DOuble=Float
CPU[Treat double as float]

e Command Line Format
DOuble=Float

o Description
Generates an object with converting double-type (double-precision floating-point) values to
float-type (single-precision floating-point) values.

* Remarks
This option isinvalid when cpu=sh4 has been specified, and assumes that fpu=single is
specified.

Rev. 1.0, 08/00, page 34 of 890
HITACHI

EXception, NOEXception
Other [Usetry, throw and catch of C++]

e Command Line Format
EXception
NOEXception
o Description
Enables the C++ exception processing (try, catch, throw).
When this option is specified, the code performance may be reduced.
The default of this option is noexception.

RTTI
[Enable/disable runtime information]

e Command Line Format

RTTI ={ ON
| OFF }

» Description
Enables or disables runtime type information.
When rtti=on is specified, dynamic_cast and typeid are enabled.
When rtti=off is specified, dynamic_cast and typeid are disabled.
The default of this option isrtti=off.

* Remarks

Do not define object files which are created by specifying this option in alibrary, and do not
output files with thisinformation as rel ocatable object files. Symbol double definition errors or
symbol undefined error will occur.

Rev. 1.0, 08/00, page 35 of 890
HITACHI

227 Options Other than Above

Table2.9 OptionsOther than Above

Command Line

Item Format Dialog Menu Specification

SelectingCor LAng={C O Compiled as C source program.

C++ language |CPp} (Determined by an Compiled as C++ source program.
extension)

Disable of LOGO O Outputs Copyright.

Copyright output o oGO (nologo is always valid) Disables to output Copyright.

Character code EUc O Selects euc code.

selectinstring g;g Selects sjis code.

literals

Japanese OUtcode ={ EUc O Selects euc code.

charactgr o | SJis } Selects sjis code.

conversion within

object code

Subcommand SUbcommand = O Command option is fetched from the

file <file name> file specified with <file name>.

LANng

None (Always determined by an extension)

» Command Line Format
LAng={ C|CPp}

» Description
Specifies the language of the source program.
When lang=c is specified, the compiler will compile the program file as a C source program.
When lang=cpp is specified, the compiler will compile the program file as a C++ source
program.

If this option is not specified, the compiler will determine whether the source programisaC or
a C++ program by the extension of the file name. If the extension is ¢, the compiler will
compileit as a C source program. If the extension is cpp, cc, or cp, the compiler will compile
it asa C++ source program. If thereis no extension, the compiler will compile the program as
a C source program.

Rev. 1.0, 08/00, page 36 of 890
HITACHI

* Example
shc test.c Compiled as a C source program.
shc test.cpp Compiled as a C++ source program.
shc -1 ang=cpp test.c Compiled asaC++ source program.
shc test Assumed to betest.c and thus be compiled as a
C source program.
* Remarks
If lang=c is specified, ecpp isinvalid.

LOGO, NOLOGO
None (nologo is aways available)

» Command Line Format
LOGO
NOLOGO
» Description
Disables the copyright output.
When logo is specified, copyright display is output.
When nologo is specified, the copyright display output is disabled.
The default of this option islogo.

Euc, §is
None

» Command Line Format
Euc
Sjis
» Description
Use this option to specify the Japanese character code written in astring literal, a character
constant, or a comment.

Rev. 1.0, 08/00, page 37 of 890
HITACHI

Table 2.10 shows character code in the string literals for three types of host computers.

Table2.10 Relationship between the Host Computer and Character Codein String Literals

Option Specification

Host Computer euc sjis Not Specified
PC euc sjis sjis

SPARC euc sjis euc
HP9000/700 euc sjis sjis

OUtcode

None

» Command Line Format
OUtcode = {EUc | SJis}

» Description
Specifies the Japanese character code to be output to the object program when Japanese is
written in string literals and character constants.

When the outcode=euc is specified, the compiler outputs the Japanese character code in the
euc code.

When the outcode=gjis is specified, the compiler outputs the Japanese character code in the
giscode.

Option euc or §is can be specified for the Japanese character code in a source program.
SUbcommand
None

e Format
SUbcommand = <file name>

» Description
Specifies the subcommand file where options used at compiler initiation are stored. The
command format in the subcommand file is the same as that on the command line.

* Example
opt.sub: - show=obj ect - debug
Command line specification: shc - cpu=sh4 -subcommand=opt.sub test.c
Interpretation at compilation: shc - cpu=sh4 - show=obj ect —debug test.c

Rev. 1.0, 08/00, page 38 of 890
HITACHI

Section 3 Assembler Options

31 Command Line Format
The format of the command line to initiate the assembler is as follows:

asnsh [A<option> .] [A<file name> [,.]] [A<option> .]
<option>: -<option> [=<suboption> [, .]}]

Note: When the user specifies multiple sourcefiles, the assembler will merge and assemble
these files as one unit in the order they were specified. In this case, the user must
writethe .END assembly directive only in thefile that was specified last.

3.2 List of Options

Table 3.1 shows assembler option formats, abbreviations, and defaults. Inthe command line
format, uppercase letters indicate the abbreviations. Characters underlined indicate the default
assumptions.

The format of the dialog menus that correspond to Hitachi Embedded Workshop is as follows:
Tab name [Item]

Options are described in the order of tabsin Hitachi Embedded Workshop option dialog box.

Rev. 1.0, 08/00, page 39 of 890
HITACHI

321 Source Tab Options

Table3.1 SourceTab Options

Item Command Line Format Dialog Menu Specification
Include file Include = <path name>[,...] Source Specifies include-file
directory [Show entries for:] destination path name.
[Include file directories]

Replacement DEFine = <sub>[, ...] Source Defines replacement string
symbol <sub>: [Show entries for:] literal.
definition <replacement symbol> [Defines]

= "<string literal>"
Integer ASsignA = <sub>[, ...] Source Defines integer preprocessor
preprocessor <sub>: [Show entries for:] variable.
variable <variable name> [Preprocessor
definition = <integer constant> variables]
Character ASsignC = <sub>[, ...] Source Defines character
preprocessor <sub>: [Show entries for:] preprocessor variable.
variable <variable name> [Preprocessor
definition = "<string literal>" variables]

Rev. 1.0, 08/00, page 40 of 890
HITACHI

Include
Source [Show entries for:] [Include file directories]

e Command Line Format
Include = <path name> [,...]

» Description
The include option specifies the include file directory. The directory name depends on the
naming rule of the host machine used. As many directory names as can be input in one
command line can be specified. The current directory is searched first, and then the directories
specified by the include option are searched in the specified order.

Example: asnmsh aaa. src —incl ude=C:\ common, C:\ | ocal
(.INCLUDE "file.h" is specified in aaa.src.)
The current directory, C:\common,C:\local are searched for file.h in that order.

Relationship with Assembler Directives

Option Assembler Directive Result
include (regardless of any specification) (1) Directory specified by
.INCLUDE
(2) Directory specified by
include*
(no specification) .INCLUDE <file name> Directory specified by .INCLUDE

Note: The directory specified by the include option is added before that specified by .INCLUDE.

DEFine
Source [Show entries for:] [Defines]

» Command Line Format
DEFine = <sub>[,...]
<sub>:<replacement symbol>="<string literal>"
» Description
The define option defines the specified symbol as the corresponding string literal to be
replaced by the preprocessor.

Differences between define and assignc are the same as those between .DEFINE and
ASSIGNC.

Rev. 1.0, 08/00, page 41 of 890
HITACHI

Relationship with Assembler Directives

Option Assembler Directive Result

define .DEFINE * String literal specified by define
(no specification) String literal specified by define

(no specification) .DEFINE String literal specified by .DEFINE

Note: When a string literal is assigned to a replacement symbol by the define option, the

definition of the replacement symbol by .DEFINE is invalidated.

ASsignA

Source[Show entries for:][Preprocessor variables)

Command Line Format

ASsignA = <sub>[,...]

<sub>:<preprocessor variable>=<integer constant>

Description

The assigna option sets an integer constant to a preprocessor variable. The naming rule of
preprocessor variablesis the same as that of symbols. An integer constant is specified by
combining the radix (B', Q', D', or H') and avalue. If the radix is omitted, the value is assumed
to be decimal. An integer constant must be within the range from —2,147,483,648 to
4,294,967,295. To specify anegative value, use aradix other than decimal.

Example: asnsh aaa.src -assigna=_%$=H FF

Value H'FF is assigned to preprocessor variable _$. All references (\&_$) to preprocessor
variable _$in the source program are set to H'FF.

Remarks

If the host computer OSis UNIX, and if the dollar mark ($) isin the preprocessor variable or
the apostrophe (") of the radix isin the integer constant, a backslash (\) must be specified
before the dollar mark ($) or the apostrophe (") of the radix.

Relationship with Assembler Directives

Option Assembler Directive Result

assigna ASSIGNA* Integer constant specified by assigna
(no specification) Integer constant specified by assigna

(no specification) ASSIGNA Integer constant specified by. ASSIGNA

Note: When a value is assigned to a preprocessor variable by the assigna option, the definition of

the preprocessor variable by .ASSIGNA is invalidated.

Rev. 1.0, 08/00, page 42 of 890

HITACHI

ASsignC

Source [Show entries for:][Preprocessor variables]

Command Line Format

ASsignC = <sub>[,...]

<sub>:<preprocessor variable>="<string literal>"

Description

The assignc option sets a string literal to a preprocessor variable.

The naming rule of preprocessor variablesisthe same asthat of symbols.
A string literal must be enclosed with double-quotation marks ().

Up to 255 characters (bytes) can be specified for a string literal.
Example: asnmsh aaa.src -assignc=_%$="0ON OFF"

String literal ON!OFF is assigned to preprocessor variable _$. All references (\&_$) to
preprocessor variable _$ in the source program are set to ON! OFF.

Remarks

To specify the following charactersin a string literal when the host computer OSis UNIX,
specify abackslash (\) before the characters. To specify string literals before and after the
following characters, enclose the string literals with double-quotation marks (*).

0 Exclamation mark (1)

O Double-quotation mark (")
O Dollar mark ($)

O Single quotation mark (°)

Relationship with Assembler Directives

Option Assembler Directive Result

assignc ASSIGNC* String literal specified by assignc
(no specification) String literal specified by assignc

(no specification) ASSIGNC String literal specified by .ASSIGNC

Note: When a string literal is assigned to a preprocessor variable by the assignc option, the

definition of the preprocessor variable by .ASSIGNC is invalidated.

Rev. 1.0, 08/00, page 43 of 890
HITACHI

322 Object Tab Options

Table3.2 Object Tab Options
Item Command Line Format Dialog Menu Specification
Debugging Debug Object Controls output of debugging
information NODebug [Debug information:] information.
Pre- EXPand Object Qutputs preprocessor expansion
processor [= <output file name>] [Generate assembly result.
expansion source file after
result preprocess]
Literal pool LITERAL = <point> [, ...]Object Specifies the point to output literal
output point <point>: [Generate literal pool pool.

{Pool | Branch | Jump after:]

| Return}
Object Object Object Controls object module output.
module [= <output file name>] [Output file directory:]
output

NOObject

Rev. 1.0, 08/00, page 44 of 890

HITACHI

Debug, NODebug

Object [Debug information:]

Command Line Format

Debug

NODebug

Description

The debug option specifies output of debugging information. The nodebug option specifies
no output of debugging information. The debug and nodebug options are only valid in cases
where an object module is generated.

Remarks

Debugging information is required when debugging a program with the debugger. Debugging
information includes information about source statement lines and symbols.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
debug (regardless of any specification) Debugging information is output.
nodebug (regardless of any specification) Debugging information is not
output.
(no specification) .OUTPUT DBG Debugging information is output.
.OUTPUT NODBG Debugging information is not
output.
(no specification) Debugging information is not
output.
EXPand

Object [Generate assembly sourcefile after preprocess]

Command Line Format
EXPand [= <output file name>]
Description
The expand option outputs an assembler source file for which macro expansion, conditional
assembly, and file inclusion have been performed.
When this option is specified, no object will be generated.
When the output file parameter is omitted, the assembler takes the following actions:
O If thefile extension is omitted:
Thefile extension will be exp.

Rev. 1.0, 08/00, page 45 of 890
HITACHI

O If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the sourcefile
specified first) and the file extension will be exp.

Note: Do not specify the same file name for the input and output files.

LITERAL

Object [Generate assembly sourcefile after preprocess]

Command Line Format

LITERAL = <paint>[,...]

<point>:{ Pool |[Branch|Jump|Return}
Description

The literal option specifies the point where the literal pool that was created by the automatic
literal pool creation function is placed.

O pool: Theliteral pool isoutput at the location of the .POOL directive.
O branch: Theliteral pool isoutput after the BRA/BRAF instruction.

O jump: Theliteral pool is output after the IMP instruction.

O return: Theliteral pool is output after the RTS/RTE instruction.

When this option is omitted, the assembler assumesliteral = pool, branch, jump, return is
specified.

Object, NOObject

Object [Output file directory:]

Command Line Format
Object [= <object output file>]
NOObject
Description
The object option specifies output of an object module.
The noobj ect option specifies no output of an object module.
When the object output file parameter is omitted, the assembler takes the following actions:
O If thefile extension is omitted:
Thefile extension will be obj.
O If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the sourcefile
specified first) and the file extension will be obj.

Rev. 1.0, 08/00, page 46 of 890

HITACHI

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

object (regardless of any specification) An object module is output.

noobject (regardless of any specification) An object module is not output.

(no specification) .OUTPUT OBJ An object module is output.
.OUTPUT NOOBJ An object module is not output.
(no specification) An object module is output.

Note: Do not specify the same file name for the input source file and the output object module. If
the same fileis specified, the contents of the input source file will be lost.

Rev. 1.0, 08/00, page 47 of 890
HITACHI

323 List Tab Options

Table3.3 List Tab Options

Item Command Line Format Dialog Menu Specification
Assemble LISt [= <output file name>] List Controls output of assemble listing
listing NOLISt [Generate list file]
output
control
Source SOurce List Controls output of source program
program NOSOurce [Contents:] listing.
listing [Source
output program:]
control’
Part of SHow [= <item>[, ...]] List Controls output of parts of source
source NOSHow [= <item>[, ...]] [Contents:] program listing.
program <item>: [Conditions:]
listing {CONditionals | Definitions | [Definitions:]
output CAlls | Expansions | [Calls:]
control’ CODe} [Expansions:]
[Code’]
Cross- CRoss_reference List Controls output of cross-reference
Reference NOCRoss_reference [Contents:] listing.
Listing [Cross
Output reference:]
Control
Section SEction List Controls output of section information
Information NOSEction [Contents:] listing.
Listing [Section:]
Output
Control

Note: These options are valid only if the list option is specified.

LISt, NOLISt
List [Generate list fil€]

e Command Line Format
LISt [= <listing output file>]
NOLISt
» Description
The list option specifies output of an assemble listing.
The nolist option specifies no output of an assemble listing.
When the listing output file parameter is omitted, the assembler takes the following actions:

Rev. 1.0, 08/00, page 48 of 890
HITACHI

O If thefile extension is omitted:
Thefile extension will belis.
O If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the sourcefile
specified first) and the file extension will belis.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

list (regardless of any specification) An assembile listing is output.

nolist (regardless of any specification) An assemble listing is not output.

(no specification) PRINT LIST An assembile listing is output.
.PRINT NOLIST An assemble listing is not output.
(no specification) An assemble listing is not output.

Note: Do not specify the same file for the input source file and the output object file. If the same
fileis specified, the contents of the input source file will be lost.

SOurce, NOSOurce
List [Contents:] [Source program:]

» Command Line Format
SOurce
NOSOurce
» Description
The sour ce option specifies output of a source program listing to the assemble listing.
The nosour ce option specifies no output of a source program listing to the assemble listing.

The sour ce and nosour ce options are only valid in cases where an assemble listing is being
output.

Rev. 1.0, 08/00, page 49 of 890
HITACHI

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Result (When an Assemble

Option Assembler Directive Listing Is Output)
source (regardless of any specification) A source program listing is output.
nosource (regardless of any specification) A source program listing is not
output.
(no specification) .PRINT SRC A source program listing is output.
.PRINT NOSRC A source program listing is not
output.
(no specification) A source program listing is output.

SHow, NOSHow

List [Contents:] [Conditions:], [Definitions], [Calls], [Expansions:], [Code:]

Command Line Format

SHow [= <output type>],...]]

NOSHow [=<output type>],...]]

<output type>: { CONditionals | Definitions | CAlls | Expansions | CODe}
Description

Outputs or suppresses a part of preprocessor source statements in the source program listing,
and outputs or suppresses a part of object code lines.

The items specified by <output type> will be output or suppressed depending on the option.
When no output typeis specified, all itemswill be output or suppressed.

show: Output
noshow: No output (suppress)

The show option and noshow option isvalid only if assemble listing is output. The following
output types can be specified:

Rev. 1.0, 08/00, page 50 of 890

HITACHI

Output Type Object

Description

conditionals Unsatisfied condition Unsatisfied .AlF or .AIFDEF statements
definitions Definition Macro definition parts,
.AREPEAT and .AWHILE definition parts,
INCLUDE directive statements
.ASSIGNA and .ASSSIGNC directive statements
calls Call Macro call statements,
AlF, .AIFDEF, and .AENDI directive statements
expansions Expansion Macro expansion statements
AREPEAT and .AWHILE expansion statements
code Object code lines The object code lines exceeding the source
statement lines
e Remarks

In a PC version, when specifying more than two output types, enclose the types with

parentheses.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option

Assembler Directive

Result

show[=<output type>]

(regardless of any specification)

The object code is output.

noshow[=<output type>]

(regardless of any specification)

The object code is not output.

(no specification)

.LIST <output type> (output)

The object code is output.

.LIST <output type> (suppress)

The object code is not output.

(no specification)

The object code is output.

CRoss reference, NOCRoss reference
List [Contents:] [Cross reference]

e Command Line Format
CRoss reference
NOCRoss reference

o Description

The cross _refer ence option specifies output of a cross-reference listing to the assemble listing.
The nocr oss _r efer ence option specifies no output of a cross-reference listing to the assemble

listing.

The cross _reference and nocross reference options are valid only if an assemblelisting is

being output.

Rev. 1.0, 08/00, page 51 of 890

HITACHI

Relationship with Assembler Directives
The assembler gives priority to specifications made by options.

Result (When an Assemble

Option Assembler Directive Listing Is Output)
cross_reference (regardless of any specification) A cross-reference listing is output.
nocross_reference (regardless of any specification) A cross-reference listing is not
output.
(no specification) .PRINT CREF A cross-reference listing is output.
.PRINT NOCREF A cross-reference listing is not
output.
(no specification) A cross-reference listing is output.

SEction, NOSEction
List [Contents:] [Section:]

e Command Line Format
SEction
NOSEction

» Description
The section option specifies output of a section information listing to the assemble listing.
The nosection option specifies no output of a section information listing to the assemble
listing.
The section and nosection options are valid only if an assemblelisting is being output.

Rev. 1.0, 08/00, page 52 of 890
HITACHI

Relationship with Assembler Directives
The assembler gives priority to specifications made by options.

Result (When an Assemble

Option Assembler Directive Listing Is Output)
section (regardless of any specification) A section information listing is
output.
nosection (regardless of any specification) A section information listing is not
output.
(no specification) .PRINT SCT A section information listing is
output.
.PRINT NOSCT A section information listing is not
output.
(no specification) A section information listing is
output.

324 Other Tab Option

Table3.4 Other Tab Option

Command Line

Item Format Dialog Menu Specification

Size mode AUTO_literal Other Specifies size mode for
specification for [Miscellaneous options:] automatic literal pool
automatic literal pool [Automatically generate generation.

generation literal pool for

immediate value]

AUTO literal
Other [Miscellaneous options:] [Automatically generate literal pool for immediate value]

e Command Line Format
AUTO literal
» Description
The auto_literal option specifies the size mode for automatic literal pool generation.

When this option is specified, automatic literal pool generation is performed in size selection
mode, and the assembler checks the imm value in the data transfer instruction without
operation size specification (MOV #imm,Rn) and automatically generates aliteral pool if
necessary.

Rev. 1.0, 08/00, page 53 of 890
HITACHI

When this option is not specified, automatic literal pool generation is performed in size
specification mode, and the data transfer instruction without size specification is handled as a
1-byte data transfer instruction.
In the size selection mode, the imm value in the data transfer instruction without operation size
specification is handled as a signed value. Therefore, avalue within the range from
H'00000080 to H'000000FF (128 to 255) is regarded as word-size data.

Selected Size or Error

Size Selection Size Specification

imm Value Range Mode Mode
H'80000000 to H'FFFF7FFF Long word Warning 835
(—2,147,483,648 to —32,769)

H'FFFF8000 to H'FFFFFF7F (—32,768 to —129) Word Warning 835
H'FFFFFF80 to H'0000007F (—128 to 127) Byte Byte

H'00000080 to H'000000FF (128 to 255) Word Byte

H'00000100 to H'00007FFF (256 to 32,767) Word Warning 835
H'00008000 to H'7FFFFFFF Long word Warning 835
(32,768 t0 2,147,483,647)

Note: The value in parentheses () is in decimal.

3.25 CPU Tab Options

Table3.5 CPU Tab Options

Item Command Line Format Dialog Menu Specification

Target CPU CPU = <target CPU> CPU Specifies target CPU.
specification [CPU]

Endian type ENdian = {Big | Little} CPU Selects big endian or little
specification [Endian:] endian.

Rounding Round = {Nearest | Zero} CPU Specifies the rounding
direction of [Round to:] mode for floating-point
floating-point data.

data

Handling DENormalize = {ON | CPU Specifies how to handle
denormalized OFF} [Denormalize:] denormalized numbers in
numbers in floating-point data.

floating-point
data

Rev. 1.0, 08/00, page 54 of 890

HITACHI

CPU
CPU [CPU]

e Command Line Format
CPU = <target CPU>
» Description
The cpu option specifies the target CPU for the source program to be assembl ed.
The following CPUs can be specified.
SH1 (for SH-1)
SH2 (for SH-2)
SH2E (for SH-2E)
SH3 (for SH-3)
SH3E (for SH-3E)
SH4 (for SH-4)
SHDSP (for SH2-DSP)
SH3DSP (for SH3-DSP)

OooOoOo0ooogooaog

Relationship with Assembler Directives

Option SHCPU Environment
Assembler Directive Variable Result
cpu= <target CPU> (regardless of any (regardless of any Target CPU specified by
specification) specification) cpu
(no specification) .CPU <target CPU> (regardless of any Target CPU specified by
specification) .CPU
(no specification) SHCPU = <target CPU> Target CPU specified by
SHCPU environment
variable
(no specification) SH1
ENdian
CPU [Endian:]

e Command Line Format
ENdian = {Big | Little}

» Description
The endian option selects big endian or little endian for the target CPU.
The default is big endian.

Rev. 1.0, 08/00, page 55 of 890
HITACHI

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result

endian=big (regardless of any specification) Assembles in big endian

endian=little (regardless of any specification) Assembles in little endian

(no specification) .ENDIAN BIG Assembles in big endian
.ENDIAN LITTLE Assembles in little endian
(no specification) Assembles in big endian

Round

CPU [Round to:]

e Command Line Format
Round = { Nearest | Zero}
» Description
The round option specifies the rounding mode used when converting constants in floating-
point data assembler directives into object codes.
The following two rounding modes can be selected.
O round to NEAREST even (near set)
O roundto ZERO (zero)
When the round option is omitted, the rounding mode depends on the target CPU as follows:

Target CPU Rounding Mode

SH-1 round to NEAREST even
SH-2 round to NEAREST even
SH-2E round to ZERO

SH-3 round to NEAREST even
SH-3E round to ZERO

SH-4 round to ZERO
SH2-DSP round to NEAREST even
SH3-DSP round to NEAREST even

Note: When thetarget CPU is SH-2E or SH-3E and round to NEAREST even is selected as the
rounding mode, warning 818 occurs at the first floating-point data assembler directive in
the source program, and object code is output in the selected "round to NEAREST even"
rounding mode.

Rev. 1.0, 08/00, page 56 of 890
HITACHI

DENormalize
CPU [Denormalizel]

e Command Line Format
DENormalize = { ON | OFF}
» Description
The denor malize option specifies whether to handle the denormalized numbers in floating-
point data assembler directives asvalid values.
The object code differs when denormalized numbers are specified as valid values (ON) and
invalid values (OFF).
O Valid: Warning 842 occurs and the object code is output.
O Invalid: Warning 841 occurs and zero is output for the object code.

When the denor malize option is omitted, whether the denormalized numbers are valid
depends on the target CPU as follows:

Target CPU Denormalized Numbers
SH-1 Valid (ON)

SH-2 Valid (ON)

SH-2E Invalid (OFF)

SH-3 Valid (ON)

SH-3E Invalid (OFF)

SH-4 Invalid (OFF)

SH2-DSP Valid (ON)

SH3-DSP Valid (ON)

Note: When thetarget CPU is SH-2E or SH-3E and denormalized numbers are specified as
valid, warning 818 occurs at the first floating-point data assembler directive in the source
program, and object code is output with the denormalized numbers handled as valid values
as specified.

Rev. 1.0, 08/00, page 57 of 890
HITACHI

3.2.6 Options Other than Above
Table3.6 OptionsOther than Above
Command Line

Item Format Dialog Menu Specification

Change of error level ABort = {Warning | Other Changes the error level at

at which the Error} [User defined options:] which the assembler is

assembler is abnormally terminated.

abnormally

terminated

Western code LATIN1 Other Enables the use of

character enabled [User defined options:] Western code characters
in source file.

Interpretation of SJIs Other Interprets Japanese

Japanese character [User defined options:] character in source file as

as Shift JIS code shift JIS code.

Interpretation of EUC Other Interprets Japanese

Japanese character
as EUC code

[User defined options:]

character in source file as
EUC code.

Specification of
Japanese character

OUtcode ={SJIS |
EUC}

Other
[User defined options:]

Specifies the Japanese
character for output to
object code.

Setting of the
number of lines in
the assemble listing

LINes =
<number of lines>

Other
[User defined options:]

Specifies the number of
lines in assemble listing.

Setting of the
number of digits in
the assemble listing

COlumns =
<number of digits>

Other
[User defined options:]

Specifies the number of
digits in assemble listing.

Copyright LOGO - Output
NOLOGO (nologo is always valid) Not output
Specification of SUBcommand = - Inputs command line from
subcommand <file name> a file.
ABort

Other [User defined options:]

e Command Line Format
ABort = {Warning|Error}

» Description

The abort option specifies the error level.
When the return value to the OS becomes 1 or larger, the object module is not output.
The abort option isvalid only if the object module is output.
Rev. 1.0, 08/00, page 58 of 890

HITACHI

The return value to the OS is as follows:

Return Value to OS when Option Specified

Number of Cases abort=warning abort=error
Warning Error Fatal Error PC UNIX PC UNIX
0 0 0 0 0 0 0
lormore O 0 2 1 0 0
— lormore O 2 1 2 1
— — 1 or more 4 1 4 1
LATIN1

Other [User defined options:]

» Command Line Format
LATIN1
o Description
The latinl option enables the use of Western code charactersin string literalsand in
comments.
Do not specify this option together with the §is, euc, or outcode option.

Rev. 1.0, 08/00, page 59 of 890
HITACHI

SJIS

Other [User defined options:]

Command Line Format
VS
Description

When the gis option is specified, Japanese charactersin string literals and comments are
interpreted as shift JI'S code.

When the gjis option is omitted, Japanese charactersin string literals and comments are
interpreted as Japanese characters depending on the host computer.

Do not specify this option together with the latinl or euc option.

EUC

Other [User defined options:]

Command Line Format

EUC

Description

When the euc option is specified, Japanese charactersin string literals and comments are
interpreted as EUC code.

When the euc option is omitted, Japanese charactersin string literals and comments are
interpreted as Japanese characters depending on the host computer.

Do not specify this option together with the latinl or §jis option.

OUtcode

Other [User defined options:]

Command Line Format

OUtcode = {SJIS| EUC}

Description

The outcode option converts Japanese charactersin the source file to the specified Japanese
character for output to the object file.

The Japanese character output to the object file depends on the outcode specification and the
Japanese character (gis or euc) in the sourcefile as follows:

Rev. 1.0, 08/00, page 60 of 890

HITACHI

Japanese Character in Source File

outcode Option sjis euc No Specification
sjis Shift JIS code Shift JIS code Shift JIS code
euc EUC code EUC code EUC code

No specification Shift JIS code EUC code Default code

Default codeis as follows.

Host Computer Default Code
SPARC station EUC code
HP9000/700 series Shift JIS code
PC Shift JIS code
LINes

Other [User defined options:]

e Command Line Format
LINes = <Number of lines>
o Description
The lines option sets the number of lines on a single page of the assemble listing. The range of
valid values for the line count is from 20 to 255.
Thelinesoption isvalid only if an assemble listing is being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
lines=<number of lines> (regardless of any specification) The number of lines on a page is
given by lines.
(no specification) .FORM LIN=< number of lines> The number of lines on a page is
given by .FORM.
(no specification) The number of lines on a page is
60 lines.

Rev. 1.0, 08/00, page 61 of 890
HITACHI

COlumns
Other [User defined options:]

e Command Line Format
COlumns = <Number of digits>
» Description
The columns option sets the number of digitsin asingle line of the assemble listing. The range
of valid values for the column count is from 79 to 255.
The columns option isvalid only if an assemble listing is being output.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
columns= (regardless of any specification) The number of digits_in a line is
<number of digits> given by columns.
(no specification) .FORM COL=<number of digits> The number of digits in a line is
given by .FORM.
(no specification) The number of digits in a line is
132.

LOGO, NOLOGO
None (nologo is aways available)

e Command Line Format
LOGO
NOLOGO
o Description
Disables the copyright output.
When the logo is specified, copyright display is output.
When the nologo is specified, the copyright display output is disabled.
When this option is omitted, logo is assumed.

Rev. 1.0, 08/00, page 62 of 890
HITACHI

SUBcommand
Other [User defined options:]

e Command Line Format
SUBcommand = <file name>
» Description
The subcommand option inputs command line specifications from afile.

Specify input file names and command line options in the subcommand file in the same order
as for normal command line specifications.

Only one input file name or one command line option can be specified in onelinein the
subcommand file.

This option must not be specified in a subcommand file.
Example:

asnmsh aaa. src - subconmand=aaa. sub
The subcommand file contents are expanded to a command line and assembled.

‘ bbb. src
i -1ist

The above command line and file aaa.sub are expanded as follows:
asnsh aaa. src, bbb.src -list -noobj

Note

One subcommand file can include a maximum of 65,535 bytes.

Rev. 1.0, 08/00, page 63 of 890
HITACHI

Rev. 1.0, 08/00, page 64 of 890
HITACHI

Section 4 Optimizing Linkage Editor Options

4.1 Option Specifications

41.1 Command Line Format
The format of the command lineis as follows:

optl nk[{A<fil e nanme>| A<option string>}...]
<option string>:-<option>[=<suboption>[,...]]

41.2 Subcommand File Format
The format of the subcommand fileis asfollows:
<option>{=| A} [<suboption>[,...]][A&][; <conment >]

For dctails, refer to section 4.2.7, Subcommand File.

4.2 List of Options

Table4.1,4.2,4.6,4.10, 4.11, 4.12, and 4.13 show Linkage Editor option formats, abbreviations,
and defaults. In the command line format, uppercase letters indicate abbreviations. Underlined
characters indicate the default settings.

The format of the dialog menus that correspond to the Hitachi Embedded Workshop is as follows:
Tab name [Item]

The order of option description corresponds to that of tabsin the Hitachi Embedded Workshop.

Rev. 1.0, 08/00, page 65 of 890
HITACHI

4.2.1 Input Tab Options
Table4.1 Input Tab Options
Item Command Line Format Dialog Menu Specification
Input file Input = <sub>[{,|A}...] Input Specifies input file.
<sub>: [Input files:] (Input file is specified without
<file name> [Relocatable files input on the command line.)
[(<module name>[,...])] and object files]
Library file LIBrary = <file name>[,...] Input Specifies input library file.
[Input files:]
[Library files]
Binary file Binary = <sub>[,...] Input Specifies input binary file.
<sub>: [Input files:]
<file name>(<section name> [Binary files]
[,<symbol name>])
Symbol DEFine = <sub>[,...] Input Defines undefined symbols
definition <sub>: [Defines:] forcedly.
<symbol name> = Defined as the same value of
{<symbol name> symbol name
|<numerical value>} Defined as a numerical value
Execution ENTry = { <symbol name> Input Specifies an entry symbol.
start address | <address>} [Use entry point:] Specifies an entry address.
Prelinker NOPREIink Input Disables prelinker initiation.
[Prelinker control:]
Input

Input[Input files:][Relocatable files and object files]

e Command Line Format
Input= <suboption>[{, | A}...]
<suboption>:<file name>[(<module name>[,...])]

» Description
Specifiesinput files. Two or more files can be specified by separating them with acomma (,)

or space.

Wildcards (* or ?) can also be used for the specification. String literals specified with
wildcards are expanded in alphabetical order. Expansion of numerical values precedes that of
aphabetical letters. Upper-case |etters are expanded before lower-case | etters.

Rev. 1.0, 08/00, page 66 of 890

HITACHI

Specifiable files are object files output from the compiler or the assembler, and rel ocatable or
absolute files output from the optimizing linkage editor. A modulein alibrary can be
specified as an input file using the format of library name (<module name>). The module
name is specified without an extension.

If an extension is omitted from the input file specification, obj is assumed when a module
name is not specified and lib is assumed when a module name is specified.

Example

i nput =a. obj libl(e) ; Inputsa.obj and module einlibl.lib.
i nput =c*. obj ; Inputsall .obj files beginning with c.
Remarks

When for m=obj ect or extract is specified, this option is unavailable.
When an input file is specified on the command line, input should be omitted.

LIBrary

Input[Input files:][Library files]

Command Line Format

LIBrary= <file name>[,...]

Description

Specifiesalibrary file. Two or more files can be specified by separating them with acomma
().

Wildcards (* or ?) can also be used for the specification. String literals specified with
wildcards are expanded in the alphabetical order. Expansion of numerical values precedes that
of alphabetical letters. Upper-case |etters are expanded before lower-case letters.

If form=library or extract is specified, the library file isinput as the object library to be
edited.

Otherwise, after the linkage processing between files specified for the input files are executed,
undefined symbols are searched in the library file.

The symbol searchin thelibrary fileis executed in the following order: user library files with
the library option specification (in the specified order), the system library files with the library
option specification (in the specified order), and then the default library (environment variable
HLNK_LIBRARY1,2,3).

Example
library=a.lib,b ; Inputsa.lib and b.lib.
library=c*.lib ; Inputsal files beginning with ¢ with the extension .lib.

Rev. 1.0, 08/00, page 67 of 890
HITACHI

Binary
Input[Input files][Binary files|

e Command Line Format
Binary = <suboption>[,...]
<suboption>:<file name>(<section name>[,<symbol name>])
o Description
Specifiesabinary file. Two or more files can be specified by separating them with acomma
().
If an extension is omitted for the file name specification, bin is assumed.

Input binary datais allocated as the specified section data. The section address is specified
with the start option. The section cannot be omitted.

When asymbol is specified, the file can be linked as a defined symbol. For avariable name
referenced by a C/C++ program, add an underscore () at the head of the reference name in the
program.
* Example
i nput =a. obj
start=p, D*¥/ 200
bi nary=b. bi n(D1bi n), c. bi n(D2bi n, _dat ab)
Allocates b.bin from 0x200 as the D1bin section.
Allocates c.bin after D1bin asthe D2bin section.
Links c.bin data as the defined symbol _datab.
¢ Remarks
When form=object, relocate, library or strip is specified, this option is unavailable.
If no input object file is specified, this option cannot be specified.

DEFine
Input[Defines:]

e Command Line Format
DEFine = <suboption>[,...]
<suboption>:<symbol name>={ <symbol name> | <numerical value>}
o Description
Defines an undefined symbol forcedly as an externally defined symbol or numerical value.

The numerical valueis specified in hexadecimal notation. If the specified value starts with a
letter from A to F, symbols are searched first, and if no corresponding symbol is found, the
valueisinterpreted as anumerical value. Vaues starting with 0 are always interpreted as
numerical values.

Rev. 1.0, 08/00, page 68 of 890
HITACHI

If the specified symbol name isa C/C++ variable name, add an underscore () at the head of

the definition name in the program. For a C++ function name (except for the main function),
enclose the definition name with double quotation marks in the program including parameter
strings.

Example

defi ne=_syni=dat a ; Defines_sym1 as the same value as the externally defined
symbol data.

def i ne=_syn2=4000 ; Defines _sym2 as 0x4000.

Remarks

When for m=object, relocate or library is specified, this option is unavailable.

ENTry

Input[Use entry point:]

Command Line Format

ENTry = { <symbol name> | <address>}

Description

Specifies the execution start address with an externally defined symbol or address.

The address is specified in hexadecimal notation. If the specified value starts with a letter
from A to F, symbols are searched first, and if no corresponding symbol isfound, the valueis
interpreted as an address. Values starting with 0 are dways interpreted as addresses.

For a C function name, add an underscore () at the head of the symbol name in the program.
For a C++ function name (except for the main function), enclose the definition name with
double quotation marks in the program including parameter strings. However, the void
argument is specified with ‘function name ()’.

If the entry symbol is specified at compilation or assembly, this option precedes the entry
symbol.

Example

entry=_main ; Specifies main function in C/C++ as the execution start address.
entry="init()” ;. Specifiesinit function in C++ as the execution start address.
entry=100 ; Specifies 0x100 as the execution start address.

Remarks

When form=obj ect, relocate, library or strip is specified, this option is unavailable.
When optimization with undefined symbol deletion (optimize=symbol_delete) is specified,
the execution start address should be specified. If it is not specified, the specification of the
optimization with undefined symbol deletion is unavailable.

Rev. 1.0, 08/00, page 69 of 890
HITACHI

NOPRElIink
Input[Prelinker control:]

e Command Line Format
NOPREIlink

» Description
Disables the prelinker initiation.
The prelinker supports the function to generate the C++ template instance automatically.
When the C++ template function is not used, specify the noprelink option to improve the link
Speed.

e Remarks
When extract or strip is specified, this option is unavailable.

Rev. 1.0, 08/00, page 70 of 890
HITACHI

4.2.2 Output Tab Options
Table4.2 Output Tab Options
Item Command Line Format Dialog Menu Specification
Output format FOrm ={ Absolute Output Absolute format
| Relocate [Type of output file:] Relocatable format
| Object Object format
| Library [= {S|U}] Library format
| Hexadecimal HEX format
| Stype S-type format
| Binary } Binary format
Debug DEBug Output Output (in output file)
information SDebug [Debug information:] Debug information file output
NODEBug Not output
Record size REcord={ H16 Output HEX record
unification | H20 [Data record Expansion HEX record
| H32 header:] 32-bit HEX record
| S1 S1 record
| S2 S2 record
| S3} S3 record
ROM support ROm = <sub>[,...] Output Reserves RAM area to
function <sub>:<ROM section name> [Show entries:] relocate a symbol with the
=<RAM section name> [ROM to RAM RAM address.
mapped sections:]
Output file OUtput = <sub>[,...] Output Specifies output file. (range
<sub>:<file name> [Show entries:] specification and divided
[=<output range>] [Divided output files:] output are enabled)
<output range>:
{<start address>
-<end address>
|<section name>[:...J}
Information Message Output Output
message NOMessage [= <sub>[,...]] [Show entries:] Not output
<sub>:<error code> [Messages:] (error number specification and
[-<error code>] range specification are
enabled)
List file LISt [= <file name>] Output Specifies list file output
[Show entries:]
[List file:]
List contents ~ Show [=<sub>[,...]] Output
<sub>:{ SYmbol [Show entries:] Symbol information
| Reference [List file:] Number of references
| SEction } Section information

HITACHI

Rev. 1.0, 08/00, page 71 of 890

FOrm

Output[Type of output file:]

e Command Line Format
FOrm = { Absolute | Relocate | Object | Library[={S | U}1}

| Hexadecimal | Stype | Binary}
o Description

Specifies the output format.
When this option is omitted, the default isfor m=absolute. Table 4.3 lists the suboptions.

Table4.3 Suboptionsof Form Option

Suboption Description

absolute Outputs an absolute file

relocate Outputs a relocatable file

object Outputs an object file. This is specified when a module is extracted as an object
file from a library with the extract option.

library Outputs a library file.
When library=s is specified, a system library is output.
When library=u is specified, a user library is output.
Default is library=u.

hexadecimal Outputs a HEX file. For details of the HEX format, refer to appendix D.2, HEX
Format.

stype Outputs an S-type file. For details of the S-type format, refer to appendix D.1,
S-Type Format.

binary Outputs a binary file.

¢ Remarks

Table 4.4 shows relations between output formats and input files or other options.

Rev. 1.0, 08/00, page 72 of 890

HITACHI

Table4.4

Relations Between Output Format And Input File Or Other Options

Output Enabled

Format Specified Option File Format Specifiable Option*!

Absolute strip specified Absolute file input, output, show=symbol, reference
other than above Obiject file input, library binary, debug/nodebug,

Relocatable file sdebug, compress, cpu, start, rom, entry,

Binary file output, optimize/nooptimize, samesize,

Library file symbol_forbid, samecode_forbid,
variable_forbid, function_forbid,
absolute_forbid, profile, cachesize,
rename, delete, define, fsymbol, stack,
noprelink, show=symbol, reference

Relocate extract specified Library file library, output, show=symbol, reference
other than above Obiject file input, library debug/nodebug, output,

Relocatable file rename, delete, noprelink, show=symbol,

Binary file reference

Library file

Object extract specified Library file library, output, show=symbol, reference
Relocate Obiject file input, library binary, cpu, start, rom, entry,
Stype Relocatable file output, optimize/nooptimize, samesize,
Binary Binary file symbol_forbid, samecode_forbid,

Library file variable_forbid, function_forbid,
absolute_forbid, profile, cachesize,
rename, delete, define, fsymbol, stack,
noprelink, record, s9*°, show=symbol,
reference

Absolute file input, output, record, s9*, show=symbol,
reference

Library strip specified Library file library, output, show=symbol, section
extract specified Library file library, output, show=symbol, section
other than above Obiject file input, library, output, rename, delete,

Relocatable file

replace, noprelink, show=symbol, section

Notes: 1. message/nomessage, change_message, logo/nologo, form, list, and

subcommand can be always specified.

2. s9 can be used only when form=stype is specified for the output format.

HITACHI

Rev. 1.0, 08/00, page 73 of 890

DEBug, SDebug, NODEBug
Output[Debug information:]

e Command Line Format

DEBug
SDebug

NODEBug
» Description
Specifies whether debug information is output.
When debug is specified, debug information is output to the output file.
When sdebug is specified, debug information is output to <output file name>.dbg file.
When nodebug is specified, debug information is not output.
If sdebug and for m=r elocate are specified, this option is interpreted as debug.

If debug is specified when two or more files are specified to be output with output, this option
isinterpreted as sdebug and debug information is output to <first output file name>.dbg.

When this option is omitted, the default is debug.

¢ Remarks
When for m=object, library, hexadecimal, stype, binary, or extract or strip is specified, this
option isunavailable.

REcord
Output[Data record header:]

» Command Line Format
Record ={ H16 |[H20 | H32|S1|S2|S3}
» Description
Outputs data with the specified data record regardless of the address range.

If thereis an address that is larger than the specified data record, the appropriate data record is
selected for the address.

When this option is omitted, various data records are output according to each address.
e Remarks
This option is available only when form=hexadecimal or stypeis specified.

Rev. 1.0, 08/00, page 74 of 890
HITACHI

ROmM

Output[Show entries for:][ROM to RAM mapped sections]

Command Line Format

ROmM = <suboption>[,...]

<suboption> : <ROM section name>=<RAM section name>

Description

Reserves ROM and RAM areas in the initialization data area and rel ocates a defined symbol in
the ROM section with the specified addressin the RAM section.

Specifies arelocatable section including the initial value for the ROM section.

Specifies a nonexistent section or rel ocatable section, the size of the RAM section of whichis
0.

Example

rom=D=R

start =0/ 100, R/ 8000

Reserves R section with the same size as D section and relocates defined symbolsin D section
with the R section addresses.

Remarks
When for m=object, relocate, library or strip is specified, this option is unavailable.

OUtput

Output[Show entries for:][Divided output files]

Command Line Format

OUtput = <suboption>],...]

<suboption> : <file name>[=<output range>]

<output range> : { <start address>-<end address> | <section name>[:...]}

Description

Specifies output file name. When form=absolute, hexadecimal, stype or binary is specified,
two or more files can be specified. An addressis specified in hexadecimal notation. If the
specified data starts with aletter from A to F, sections are searched first, and if no
corresponding section is found, the datais interpreted as an address.

When this option is omitted, the default is <first input file name>.<default extension>.
The default extensions are as follows:

form=absolute: abs form=relocate: rel form=object: obj
form=library: lib form=hexadecimal: hex = form=stype: mot
form=binary: bin

Rev. 1.0, 08/00, page 75 of 890
HITACHI

Example
out put=filel.abs=0-ffff,file2. abs=10000-1ffff

Outputs the range from 0 to Oxffff to filel.abs and the range from 0x10000 to Ox 1ffff to
file2.abs.

out put=fil el. abs=secl:sec2,fil e2. abs=sec3
Outputs the sec1 and sec2 sections to filel.abs and the sec3 section to file2.abs.

M essage, NOM essage

Output[Show entries for:][Messages]

Command Line Format

Message

NOM essage [=<suboption>[,...]]

<suboption> : <error code>[-<error code>]

Description

Specifies whether information level messages are output.

When message is specified, information level messages are output.

When nomessage is specified, the output of information level messages are disabled. If an
error number is specified, the output of the error message with the specified error number is
disabled. A range of error message numbers to be disabled can be specified using a hyphen (-
). If awarning or error level message number is specified, the message output is disabled
because change _message is assumed to change the specified message to the information level.
When this option is omitted, the default is nomessage.

Example

nonmessage=4, 200- 203, 1300

Messages of L0004, L0200 to L0203, and L1300 are disabled to be outpuit.

LISt

Output[Show entries for:][List filg]

Command Line Format

LISt [=<file name>]

Description

Specifiesalist file output or list file name.

If no list file name is specified, alist file with the same name as the output file (or first output
file) is created, with the extension Ibp when form=library is specified or map in other cases.

Rev. 1.0, 08/00, page 76 of 890

HITACHI

SHow
Output[Show entriesfor:][List filg]

e Command Line Format
SHow [=<suboption>[,...]]
<suboption>:{ SYmbol | Reference | SEction }
o Description
Specifies output contents of alist.
Table 4.5 lists the suboptions.
For details of list examples, refer to section 8.4, Linkage Listings, or section 8.5, Library
Listings.
Table4.5 Suboptions of show Option

Output Format Suboption Name Description

form=library symbol Outputs a symbol name list in a module
or whgn extractis reference Cannot be specified
specified.
section Outputs a section list in a module
Other than above symbol Outputs a symbol address, size, type, and optimization
or when extract is contents
specified. reference Outputs the number of symbol references
section Cannot be specified
¢ Remarks

When form=aobj ect or relocate is specified, the show=refer ence option is unavailable.

Rev. 1.0, 08/00, page 77 of 890
HITACHI

4.2.3 Optimize Tab Options
Table4.6 Optimize Tab Options
Item Command Line Format Dialog Menu Specification
Optimization OPtimize [= <sub>[,...]] Optimize Executes optimization.
<sub>: {STring_unify [Optimize:] Unifies constants/string literals.
| SYmbol_delete Deletes unreferenced symbols.
| Variable_access Uses short absolute addressing
mode.
| Register Provides optimization with register
save/restore.
| SAMe_code Unifies same codes.
| Function_call Uses indirect addressing mode.
| Branch
| SPeed Provides optimization for speed.
| SAFe} Provides safe optimization.
Nooptimize No optimization.
Same code SAMESize = <size> Optimize Specifies the minimum size to unify
size (default: sames=1e) [Eliminated size:] same codes.
Profile PROfile = <file name> Optimize Specifies a profile information file.
information [Include profile:] (Dynamic optimization is provided.)
Cache size CAchesize= Optimize
Size=<size>, [Cache size:] Specifies a cache size.
Align=<line size> Specifies a cache line size.
(default: ca=s=8,a=20)
Optimization SYmbol_forbid= Optimize Specifies a symbol where
partially <symbol name>[,...] [Generate unreferenced symbol deletion is
disabled external symbol disabled.

SAMECode_forbid=

<function name>][,...]

Variable_forbid=
<symbol name>[,...]
FUnction_forbid=

<function name>[,...]

Absolute_forbid=

<address>[+<size>][,...]

file:]

Specifies a symbol where same code
unification is disabled.

Specifies a symbol where short
absolute addressing mode is disabled.
Specifies a symbol where indirect
addressing mode is disabled.
Specifies an address range where
optimization is disabled.

Rev. 1.0, 08/00, page 78 of 890

HITACHI

OPtimize
Optimize[Optimize:]

e Command Line Format
Optimize [= <suboption>[,...]]
<suboption>: { STring_unify | SYmbol_delete | Variable_access | Register | SAMe _code |
Function_call | Branch | SPeed | SAFe}
» Description
Specifies whether the inter-module optimization is executed.
When optimizeis specified, optimization is performed for the specified file at compilation or
assembly.
When nooptimizeis specified, no optimization is executed for amodule.
When this option is omitted, the default is optimize.
Table 4.7 shows the suboptions

Rev. 1.0, 08/00, page 79 of 890
HITACHI

Table4.7 Suboptions of Optimize Option

Suboption

Description

Program to be Optimized’

SHC SHA H8C

H8A

No parameter

Provides all optimizations

o

X

o

O

string_unify

Unifies same-value constants having the const
attribute. Constants having the const attribute are:

 Variables defined as const in C/C++ program
« Initial value of character string data
« Literal constant

(0]

X

(0]

X

symbol_delete

Deletes variables/functions that are not referenced.
The entry option should be specified.

(0]

variable_access

Allocates frequently accessed variables to the area
accessible in the 8/16 hit absolute addressing
mode. The cpu option should be specified.

register

Investigates function calls, relocates registers and
deletes redundant register save or restore codes.
The entry option should be specified.

same_code

Creates a subroutine for the same instruction
sequence.

function_call

Allocates addresses of frequently accessed
functions to the range 0 to OxFF if there is a space.
The cpu option should be specified.

branch

Optimizes branch instruction size according to
program allocation information. Even if this option
is not specified, it is performed when any other
optimization is executed.

speed

Executes optimizations other than those reducing
object speed. This suboption is the same as the
following specifications:

Optimize=string_unify, symbol_delete,
variable_access, register, or branch

safe

Executes optimizations other than those limited by
variable or function attributes. This suboption is
the same as the following specifications:

optimize=string_unify, register, or branch

Note: SHC: C/C++ program for SH
SHA: Assembly program for SH
H8C: C/C++ program for H8
H8A: Assembly program for H8

Rev. 1.0, 08/00, page 80 of 890

HITACHI

¢ Remarks
When form=obj ect, relocate, library or strip is specified, this option is unavailable.

SAMesize
Optimize[Eliminated size:]

e Command Line Format
SAMESize = <size>
o Description
Specifies the minimum code size for the optimization with the same-code unification
(optimize=same_code). Specify a hexadecimal value from 8 to 7FFF.
When this option is omitted, the default is samesize=1e.
* Remarks
When optimize=same_code is not specified, this option is unavailable.

PROfile
Optimize[Include profiles]

e Command Line Format
PROfile = <file name>
» Description
Specifies a profile information file.

Specifiable profile information files are those output from the Hitachi Debugging Interface
(HDI) Ver5.0 or later.

When profile information file is specified, inter-module optimization according to dynamic
information can be performed.

Table 4.8 shows optimizations influenced by a profile information input.

Rev. 1.0, 08/00, page 81 of 890
HITACHI

Table4.8 Relations Between Profile Information and Optimization

Program to be Optimized ™

Suboption Description SHC SHA HS8C HSA

variable_access Allocates variables that are dynamically X X (0] (0]
accessed frequently first.

function_call Lowers the optimized order of functions X X (0] (0]
dynamically accessed frequently.

branch Allocates a function that is dynamically accessed (0] A (0] (0]
frequently near the calling function.

For the SH program, the optimization with
allocation is performed depending on the cache
size specified using the cachesize option.

Notes: 1. SHC: C/C++ program for SH
SHA: Assembly program for SH
H8C: C/C++ program for H8
H8A: Assembly program for H8
2. Movement is provided not in the function unit, but in the input file unit.

* Remarks
If the optimize option is not specified, this option is unavailable.

CAchesize
Optimize] Cache size:]

e Command Line Format
CAchesize = Size = <size>, Align = <line size>
» Description
Specifies a cache size and cache line size.
When profileis specified, this option is used at the branch instruction optimization
(optimize=branch).
Specify asizein kbytes and specify aline size in bytes in hexadecimal notation.
When this option is omitted, the default is cachesize=size=8, align=20.
e Remarks
If profileis not specified, this option is unavailable.

Rev. 1.0, 08/00, page 82 of 890
HITACHI

SYmbol_forbid , SAMECode forbid, Variable forbid, FUnction_forbid, Absolute forbid
Optimize[Forbid item:]

e Command Line Format
SY mbol_forbid = <symbol name> [,...]
SAMECode forbid = <function name> [,...]
Variable forbid = <symbol name>[,...]
FUnction_forbid = <function name> [,...]
Absolute forbid = <address> [+<size>] [,...]

» Description
Disables optimization for the specified symbol or addressrange. Specify an address or sizein
hexadecimal notation. For a C/C++ variable or C function name, add an underscore () at the
head of the definition namein the program. For a C++ function, enclose the definition namein
the program with double quotation marks including the parameter strings. However, the void
argument is specified with ‘function name ()’.
Table 4.9 shows the suboptions.

Table4.9 Suboptions of Show Option

Suboption Parameter Description
symbol_forbid Function name Disables optimization with unreferenced symbol deletion
| variable name

samecode_forbid Function name Disables optimization with same-code unification

variable_forbid Variable name Disables optimization with using short absolute
addressing mode

function_forbid Function name Disables optimization with using indirect addressing
mode

absolute_forbid Address [+ size] Disables optimization with address + size specification

* Example

synbol _forbid="f(int)” ; Doesnotdeletethe C++ function f(int) even if it is not
referenced.
* Remarks

If optimize is not specified, this option is unavailable.

Rev. 1.0, 08/00, page 83 of 890
HITACHI

424 Section Tab Options

Table4.10 Section Tab Options

Item Command Line Format Dialog Menu Specification
Section STARt = <sub>[,...] Section Specifies a section start address.
address <sub>: <section name> [Relocatable

[{:].,}<section name>[,...]] section start

[/<address>] address:]

Symbol FSymbol = <section name>[,...] Section Outputs externally defined symbol
address [Generate external addresses to a definition file.
file symbol file:]
STARt

Section[Rel ocatable section start address:]

Command Line Format

STARt = <suboption> [,...]

<suboption> : <section name> [{ : |, } <section name> [,...]] [/ <address>]

Description

Specifies the start address of the section. Specifies an address in hexadecimal notation.

Two or more sections can be allocated to the same address by separating them with a colon (:).

The section name can be specified using wildcards (*). Sections specified using wildcards are
expanded according to the input order.

Sections specified at a single address are allocated in the specified order.

Objectsin asingle section are allocated in the specification order of the input file or the input
library.

If no address is specified, the section is allocated at 0.

A section which is not specified with the start option is allocated after the last allocation
address.

Example

start=P, C, D*/ 100, R1: R2/ 8000 : D1 and D2 are assumed to be in the section starting
casD.

ROVED1=R1, D2=R2
Allocates P, C, D1, and D2 respectively to the addresses starting from 0x100. Both R1 and R2
are allocated to 0x8000.

i nput =a. obj b. obj ; a.obj references symbolsin d.lib and b.obj references symbolsin
; clib.

library=c.lib,d.lib
start=P/ 100 ; Theallocation order in the P section is a(P), b(P), c(P) and d(P).

Rev. 1.0, 08/00, page 84 of 890

HITACHI

Remarks
When form=obj ect, relocate, library or strip is specified, this option is unavailable.

FSymbol

Section[Generate external symbol file]

Command Line Format
FSymbol = <section name> [,...]
Description

Outputs externally defined symbolsin the specified section to afile in the assembler
instruction format.

The file name is <output file>.fsy.

Example

f Symbol = sct2, sct3

out put =t est . abs

Outputs externally defined symbolsin sections sct2 and sct3 to test.fsy.

[Output example of test.fsy]

; HHTACH OPTI M ZI NG LI NKAGE EDI TOR GENERATED FI LE 1999. 11. 26
; fsynbol = sct2, sct3

; SECTI ON NAME = sct 2

.export _f
_f: .equ h’ 00000000
.export _q

_Qg: .equ h'00000016
; SECTI ON NAME = sct3
.export _main
_main: .equ h’ 00000020
. end
Remarks
When form=obj ect, relocate, library or strip is specified, this option is unavailable.

Rev. 1.0, 08/00, page 85 of 890
HITACHI

4.25 Verify Tab Options

Table4.11 Verify Tab Options

Item Command Line Format Dialog Menu Specification
Address CPu = {<cpu information file Verify Specifies a CPU information file.
check name> |
{ROM|RAM}= [CPU information Specifies a specifiable allocation
<address range>[,...] check:] range for section addresses.

<address range>:
<start address>
-<end address>

CPu

Verify[CPU information check:]

Command Line Format
CPu={ <cpu information file name>

| {ROmM | RAM} = <addressrange> [,...]}
<addressrange> : <start address> - <end address>
Description
Checks section allocation addresses.

Specify an address range in which a section can be allocated in hexadecimal notation. The
ROM/RAM attribute is used for the inter-module optimization .

The CPU information files created with the CPU information analyzer (cia) attached to a
former version product can be specified.

Example
cpu=ROM=0- FFFF, RAM=10000- 1FFFF

Checks that section addresses are allocated within the range from 0 to FFFF or from 10000 to
1FFFF.

Object movement is not provided between different attributes with the inter-module
optimization .

Remarks

When for m=object, relocate, library or strip is specified, this option is unavailable.

Rev. 1.0, 08/00, page 86 of 890

HITACHI

4.2.6 Other Tab Options

Table4.12 Other Tab Options

Item Command Line Format Dialog Menu Specification
End code S9 Other Always outputs the S9
[Miscellaneous options:] record.
[Always output S9 record
at the end]
Stack STACK Other Outputs a stack use
information [Miscellaneous options:] information file.
file [Stack information output]
Symbol REName = <sub>[,...] Other Modifies a symbol name
name <sub>: [User defined options:] or section name.
modification {[<file name>]
(<name>=<name>[,...])
| [<kmodule name>]
(<name>=<name>[,...]) }
Symbol DELete = <sub>[,...] Other Deletes a symbol name
name <sub>: [User defined options:] or section name.
deletion {<module name>
| [<file name>]
(<name>[,...]) }
Module REPlace = <sub>[,...] Other Replaces modules of the

<sub>: <file>
[(<module>[,...])]

replacement

[User defined options:] same name in a library

file.

Module EXTract = <module>[,...] Other Extracts the specified
extraction [User defined options:] module in a library file.
Debug STRip Other Deletes debug
information [User defined options:] information in an absolute
deletion file or a library file.
Message CHange_message=<sub>[,...] Other Modifies message levels.
level <sub>: [User defined options:]

{Information | Warning | Error }

[=<error number>
[-<error number>] [,...]1]

Copyright LOgo - Output

NOLOgo Not output

Rev. 1.0, 08/00, page 87 of 890

HITACHI

Table4.12 Other Tab Options (cont)

Item Command Line Format Dialog Menu Specification

Continuation END - Executes option strings

already input, inputs
continuing option strings
and continues
processing.

Termination EXIt - Specifies the termination

of option input.

9

Other[Miscellaneous options:][Always output S9 record at the end]

Command Line Format

S9

Description

Outputs the S9 record at the end even if the entry address exceeds 0x10000.
Remarks

When for m=stype is not specified, this option is unavailable.

STACk

Other[Miscellaneous options:][Stack information output]

Command Line Format

STACk

Description

Outputs a stack use information file.

Thefile name is <output file name>.sni.

Remarks

When form=obj ect, relocate, library or strip is specified, this option is unavailable.

Rev. 1.0, 08/00, page 88 of 890

HITACHI

REName

Other[User defined options:]

Command Line Format
REName = <suboption> [,...]
<suboption>: {[<file>] (<name> = <name> [,...])
| [cmodule>] (<name> = <name>[,...]) }
Description
Modifies a symbol name or a section name.
Symbol names or section names in aspecific file or library in amodule can be modified.
For a C/C++ variable name, add an underscore () at the head of the definition namein the
program.
When afunction name is modified, the operation is not guaranteed.
If the specified name matches both section and symbol names, the symbol name is modified.
If there are several files or modules of the same name, the priority depends on the input order.

Example

rename=(_symil=dat a) ; Modifies sym1 to data.

rename=l i b1(P=P1) ; Maodifiesthe section P to P1 in the library module lib1.
Remarks

When extract or strip is specified, this option is unavailable.

DELete

Other[User defined options:]

Command Line Format
DEL ete = <suboption> [,...]
<suboption>: {[<file>] (<name> [,...]) | <module>}
Description
Deletes an external symbol name or library module.
Symbol names or modules in the specified file can be del eted.

For a C/C++ variable name or C function name, add an underscore () at the head of the
definition namein the program. For a C++ function name, enclose the definition name in the
program with double quotation marks including the parameter strings. If there are several files
or modules of the same name, thefile that isinput first is applied.

When a symbol is specified to be deleted using this option, the object is not del eted.

Rev. 1.0, 08/00, page 89 of 890
HITACHI

Example

del et e=(_synl) ; Deletesthe symbol _sym1in all files.

del ete=fil el. obj (_syn2) ; Deletesthesymbol sym2intheinput filefilel.obj.
Remarks

When extract or strip is specified, this option is unavailable.

REPIlace

Other[User defined options:]

Command Line Format
REPlace = <suboption> [,...]
<suboption>: <file name> [(<module name>[,...])]
Description
Replaces library modules.

Replaces the specified file or library module with the module of the same namein the library
specified with the library option.

Example

repl ace=fil el. obj ; Replaces with the module filel.obj.

replace=libl.lib(mdl 1) ; Replaceswiththe module mdllintheinput library tile
libl.lib.

Remarks

When for m=obj ect, relocate, absolute, hexadecimal, stype, binary, or extract or strip is
specified, this option is unavailable.

EXTract

Other[User defined options:]

Command Line Format

EXTract = <module name> [,...]

Description

Extracts library modules.

Extract the specified library module from the library file specified using the library option.
Example

extract=filel : Extracts the module filel.

Remarks

When for m=absolute, hexadecimal, stype, binary or strip is specified, thisoptionis
unavailable.

Rev. 1.0, 08/00, page 90 of 890

HITACHI

STRip

Other[User defined options:]

Command Line Format

STRip

Description

Deletes debug information in an absolute file or library file.

When the strip option is specified, one input file should correspond to one output file.
Example

input=filel.abs file2.abs file3.abs

strip

Deletes debug information of filel.abs, file2.abs, and file3.abs, and outputs this information to
filel.abs, file2.abs, and file3.abs, respectively. Filesfrom which debug information isto be
deleted are backed up in filel.abk, file2.abk, and file3.abk.

Remarks

When for m=object, relocate, hexadecimal, stype or binary is specified, thisoption is
unavailable.

CHange_message

Other[User defined options:]

Command Line Format

CHange_message = <suboption>[,...]

<suboption>: <error level> [= <error number> [-<error number>] [,...]]
<error level>: { Information | Warning | Error}

Description

Modifiesthe level of information, warning and error messages.
Specifies the execution continuation or abort at the message output.
Example

change_nessage=war ni ng=2310

Modifies L2310 to the warning level and specifies execution continuation at L2310 output.
change_nessage=err or

Modifies information and warning messages to error level messages.
When amessage is output, the execution is aborted.

Rev. 1.0, 08/00, page 91 of 890
HITACHI

L Ogo, NOLOgo
None (nologo is always available.)

e Command Line Format
LOgo
NOLOgo
o Description
Specifies whether the copyright is output.
When the logo option is specified, the copyright is displayed.
When the nologo option is specified, the copyright display is disabled.
When this option is omitted, the default is logo.

END
None

e Command Line Format
END

» Description
Executes option strings specified before END. After the linkage processing is terminated,
option strings that are specified after END are input and the linkage processing is continued.
This option cannot be specified on the command line.

* Example

i nput =a. obj , b. obj ; processing (1)
start=P, C, Y 100, B/ 8000 ; processing (2)
out put =a. abs ; processing (3)
end

i nput =a. abs ; processing (4)
f or nest ype ; processing (5)
out put =a. not ; processing (6)

Executes the processing from (1) to (3) and outputs a.abs. Then executes the processing from
(4) to (6) and outputs a.mot.

Rev. 1.0, 08/00, page 92 of 890
HITACHI

EXIt
None

e Command Line Format
EXIt
» Description
Specifies the end of the option specifications.
This option cannot be specified on the command line.
* Example
Command line specification: opt| nk —sub=t est. sub - nodebug

test. sub: i nput =a. obj , b. obj ; processing (1)
start=P, C, U 100, B/ 8000 ; processing (2)
out put =a. abs ; processing (3)
exit

Executes the processing from (1) to (3) and outputs a.abs.
The nodebug option specified on the command line after exit is unavailable.

4.2.7 Subcommand File Option

Table4.13 Subcommand Tab Option

Item Command Line Format Dialog Menu Specification
Subcommand SUbcommand = Subcommand Specifies an option with a
file <file name> [Subcommand file subcommand file

path:]

Rev. 1.0, 08/00, page 93 of 890
HITACHI

SUbcommand

Subcommand file] Subcommand file path:]

Command Line Format

SUbcommand = <file name>

Description

Specifies an option with a subcommand file.

The format of the subcommand fileis as follows:

<option>{ =| A} [<suboption>[,...]] [A&] [;<comment>]

The option and suboption are separated by a = or a space.

For the input option, suboptions are separated by a space.

One option is specified on aline in the subcommand file.

If a subcommand description exceeds one line, the description can be allowed to overflow to

the next line by using an ampersand (&).

The subcommand option cannot be specified in the subcommand file.

Example

Command line specification: opt | nk fil el. obj —sub=test.sub fil e4. obj

Subcommand specification: i nput file2.obj file3.obj ; Thisisacomment.
library libl.lib, & ; Specifiesline continued.
lib2.lib

Option contents specified with a subcommand file are expanded to the location at which the
subcommand is specified on the command line and are executed.

The order of fileinput isfilel.obj, file2.0bj, file3.obj, and file4.obj.

Rev. 1.0, 08/00, page 94 of 890

HITACHI

Section 5 Standard Library Generator
Operating Method

51 Option Specifications
The format of the command line is asfollows:
| bgsh [A<option string>...]
<option string>:-<option>[=<suboption>[,...]]
When running Library Generator under UNIX or the DOS prompt of Windows NT(R) or

Windows(R)2000, follow the procedure below:

(1) Running under UNIX
Run under the directory where the compiler is installed.

(2) Running under the DOS prompt of Windows NT(R) or Windows(R)2000
Run the program with the full-path name including the file extension(exe).

Example: c:\hew\Tools\Hitachi\Sh\6_0_0\bin\lbgsh.exe

52 Option Descriptions

Options and suboptions of the standard library generator are based on the C/C++ compiler options.
The following section describes the difference between the options and suboptions of the standard
library generator and those of the C/C++ compiler. For details on C/C++ compiler options, refer
to section 2, Compiler Options.

In the command line format, uppercase lettersindicate abbreviations. The format of the dialog
menus that correspond to the Hitachi Embedded Workshop is as follows. Tab name [Item].

521 Additional Options

Table 5.1 shows additional options.

Rev. 1.0, 08/00, page 95 of 890
HITACHI

Table5.1 Additional Options

Item Command Line Format Dialog Menu Specification
Header file Head = <sub>[,...] Category Specifies a configuration file.
<sub>{ ALL [Category:] All library functions

| RUNTIME Runtime routine

| CTYPE ctype.h + runtime routine

| MATH math.h + runtime routine

| MATHF mathf.h + runtime routine

| STDARG stdarg.h + runtime routine

| STDIO stdio.h + runtime routine

| STDLIB stdlib.h + runtime routine

| STRING string.h + runtime routine

| 10S ios + runtime routine

| NEW new + runtime routine

| COMPLEX complex + runtime routine

| CPPSTRING } string + runtime routine
Output file ~ OUTPut = <file name> Object Specifies an output library file

[Output file:]

name.

Head

Category [Category:]

Description Format: Head = <sub>[,...]
<sub>{ ALL
| RUNTIME
| CTYPE
| MATH
| MATHF
| STDARG
| STDIO
| STDLIB
| STRING
| 10S
| NEW
| COMPLEX
| CPPSTRING }

Description: Specifies a configuration file with a header file name.
For relationships between header files and library functions, refer to section
10.3, C/C++ Library. The runtime routine is always configured.

The default of this option is head=all.

Rev. 1.0, 08/00, page 96 of 890
HITACHI

Example: | bgsh —out put =sh2.1i b —head=mat hf —cpu=sh2

Compileslibrary functions defined by mathf.h and runtime routine with
option: -cpu=sh2, and outputs library file sh2.lib.

OUTPut
Object [Output file]
Description Format: OUTPut = <File name>

Description: Specifies an output file name.
The default of this option is output=stdlib.lib.

Example: | bgsh —out put =sh2.lib —optini ze —speed
—gopti m ze —cpu=sh2

Compiles al standard library source files with options: -optimize -speed
-goptimize -cpu=sh2, and outputs library file sh2.lib.

522 Options Not Available for Standard Library Generator

Table 5.2 shows C/C++ compiler options that cannot be specified for the standard library
generator. If any of the options listed in table 5.2 are specified, these specifications are ignored.

Rev. 1.0, 08/00, page 97 of 890
HITACHI

Table5.2 Options Not Availablefor Standard Library Generator
Compiler
Item Option Interpretation Description
Include file directory Include None O
Macro name definition DEFine None O
Message output Message NOMessage No output
control NOMessage
Preprocessor PREProcessor None O
inline output
Object type Code Code = Machinecode Outputs machine code program
Debugging information DEBug NODEBug No output
NODEBug
Object file output OBjectfile None O
Template instance Template None No template function used
generation
Listing file Listfile NOListfile No output
NOListfile
Listing format Show None O
Comment nesting COMment None No comment nesting function
used
MAC register Macsave Macsave = 1 Contents of MACH and MACL
registers are guaranteed.
Selecting C or C++ LANg None Determined by an extension
language
Disable of Copyright LOGo NOLOGo Copyright output disabled
output NOLOGo
Character code select in EUc None No character code used
string literals SJis
Japanese character OUtcode None No character code used

conversion within object

code

Rev. 1.0, 08/00, page 98 of 890

HITACHI

523 Notes on Specifying Options
When options are specified, follow the rules below:

(1) Specify the same options as in compiling for options cpu, division, endian, fpu, round,
denormalization, pic, double=float, and rtti.

(2) When #pragma global_register is used, specify a header file that includes the #pragma
global_register declaration with the preinclude option. When Hitachi Embedded
Workshop is used, specify it with Other[User defined options].

Rev. 1.0, 08/00, page 99 of 890
HITACHI

Rev. 1.0, 08/00, page 100 of 890
HITACHI

Section 6 Operating Stack Analysis Tool

6.1 Overview

The stack analysis tool displays the stack amount by reading the stack information file (*.sni)
output by the optimizing linkage editor or the profile information file (*.pro) output by Hitachi
Debugging Interface.

For the stack amount of the assembly program that cannot be output in the stack information file,
the information can be added or modified by using the edit function. In addition, the stack amount
of whole systems can be cal culated.

The information on the edited stack amount can be saved and read as the call information file
(*.cal).
6.2 Startingthe Stack Analysis Tool

To start the stack analysistool, select [Run...] from the start menu of Windows[and specify
Call.exe for execution.

When Hitachi integrated development environment is used, select [Program] from the start menu
of Windowsl], and then 'Hitachi Call Walker' registered in 'Hitachi Embedded Workshop'.

After Hitachi integrated environment is started, the stack analysis tool can aso be started from the
[Tools] menu.

Rev. 1.0, 08/00, page 101 of 890
HITACHI

6.3 Overview of the Stack Analysis Tool Function

(B tettied - Calaber =101 %]
Be Ol Wew Hep
NEEE A F MM T
‘Shlh-dl.hr,erprlﬁJl\.--\.lnl 3
- | T Skl | T m | ackeen|fowm |
=+ w34 HCT_usin CoBEL | ™ W e
= R H el E4 BT _riesmuptisnad [L Dl ks 8 iniesmgihusned. oby
{H =l D)
[H el i
IH abi2d eRl
TH _mubi 3 T
HT| s | 44 }

T _sicat i | 98]

= W st {46
B WwE [)

TT _inbsrrupdiisra C B

1| | |
For Halp, prei= P

Figure6.1 Usage Example of Stack Analysis Tool

Figure 6.1 shows the usage example of the stack analysistool. Table 6.1 lists the functions for
each menu.

In the leftmost call information view, the function call information and used stack information are
displayed. In the rightmost symbol information view, more detailed information on the function
and symbol is displayed.

Note that 3] and [R8] indicate the C or C++ function and assembly function, respectively.

Notes. 1. The stack amount, calculated in the stack information file, may be larger than the
actual value when the optimizing option is used.

2. The stack amount for the interrupt function does not include the stack size used by the
interrupt controller for saving when an interrupt occurs. Refer to the device hardware
manual and calculate the required amount.

3. The stack amount for the interrupt function does not include the saved extended
register (EXR).

Rev. 1.0, 08/00, page 102 of 890
HITACHI

Table6.1 Stack Analysis Tool Function

Menu Function
File New Clears and newly creates the edit information.
Open Opens the existing call information file (*.cal).
Save Overwrites and saves the call information file being edited.
Save As Saves the call information file being edited by specifying the file
name.
Import Stack File Reads the stack information file (*.sni) of the stack amount output
by the optimizing linkage editor or the profile information file
(*.pro) output by Hitachi Debugging Interface.
Recent File Opens the call information file that has been recently used.
Exit Exits the stack analysis tool.
Edit Add Adds the new function and symbol information.
Modify Modifies the existing function and symbol information.
Delete Deletes the function and symbol information.
Find Finds the function and symbol information of the specified search
condition.
Find Next Finds the next information searched by the Find command.
Find Previous Finds the previous information searched by the Find command.
View Toolbar itches the toolbar being displayed or not.
Status Bar Switches the status bar being displayed or not.
Radix Switches the radix display on the numerical value section
(Address, Size, or Stack size) in the symbol information.
Help Help Topics Displays the help of the stack analysis tool.
About Call Walker lays the version or copyright of the stack analysis tool.

For more information, refer to the help of the stack analysis tool.

Rev. 1.0, 08/00, page 103 of 890
HITACHI

Rev. 1.0, 08/00, page 104 of 890
HITACHI

Section 7 Environment Variables

7.1 Environment VariablesList
Environment variables are listed in table 7.1.

Table7.1 Environment Variables

Environment
Variable Description

path Specifies a storage directory for the compiler.
Specification format:

PC version: C> path = <compiler path name>; [<previous path
name>;...]
UNIX C shell: %set path = (<compiler path name> $path)
UNIX Bourne shell: %PATH = :<compiler path name> [:<previous path
name>...]
%export PATH
SHC _LIB Specifies a directory at which compiler load module and system include file

exist. To enter commands using the DOS prompt of the PC version, or for
the UNIX version, this environment variable must be specified.

Specification format:

PC version: C> set SHC_LIB = <compiler file path name>

UNIX C shell: %setenv SHC_LIB = <compiler file path name>

UNIX Bourne shell: %SHC_LIB = <compiler file path name>
%export SHC_LIB

SHCPU Specifies the CPU type by the compiler or assembler . cpu option using
environment variables. The following is specified.

<CPU>: SH1, SH2, SH2E, SHDSP, SH3, SH3E, SH3DSP, and SH4

When the specification of CPU by SHCPU environment variable and the
cpu option differs, a warning message is displayed. cpu option has priority
over SHCPU specification.

When SHDSP and SH3DSP are specified for the compiler, SH2 and SH3 are
assumed, respectively.

Specification format:

PC version: C> set SHCPU = <CPU>

UNIX C shell: %setenv SHCPU = <CPU>

UNIX Bourne shell: %SHCPU = <CPU>
%export SHCPU

Rev. 1.0, 08/00, page 105 of 890
HITACHI

Table7.1 Environment Variables (cont)

Environment
Variable Description

SHC_INC* Specifies a directory at which a system include file exists. A system include
file is searched for at a directory specified by include option, SHC_INC-
specified directory, and system directory (SHC_LIB) in this order. User
include files are searched for at the current directory, a directory specified by
include option, and SHC_INC-specified directory in this order. When the
environment variable is not specified, SHC_LIB is assumed for the UNIX
version. The PC version does not have default.

Specification format:

PC version: C> set SHC_INC = <include path name>
[;<include path name>;...]
UNIX C shell: %setenv SHC_INC = <include path name>

[:<include path name>:...]

UNIX Bourne shell: % SHC_INC = <include path name>
[:<include path name>:...]
%export SHC_INC

SHC_TMP Specifies a directory for a temporary file generated by the compiler. In the
PC version, SHC_TMP must be specified so that the DOS prompt can be
used to enter commands. For the UNIX version, the directory indicated by
the environment variable TMPDIR is used when this environment variable is
not specified. If neither SHC_TMP nor TMPDIR is specified, temporary files
are generated in /usr/tmp.

Specification format:

PC version: C> set SHC_TMP = <temporary file path name>

UNIX C shell: %setenv SHC_TMP = <temporary file path name>

UNIX Bourne shell: %SHC_TMP = <temporary file path name>
%export SHC_TMP

Rev. 1.0, 08/00, page 106 of 890
HITACHI

Table7.1 Environment Variables (cont)

Environment
Variable

Description

HLNK_LIBRARY1
HLNK_LIBRARY?2
HLNK_LIBRARY3

Specifies a default library name for the optimizing linkage editor. Libraries
which are specified by a library option are linked first. Then, if there is an
unresolved symbol, the default libraries are searched in the order 1, 2, 3.

Specification format:
PC version:

UNIX C shell:

UNIX Bourne shell:

C> set HLNK_LIBRARY1 = <library name 1>
C> set HLNK_LIBRARY2 = <library name 2>
C> set HLNK_LIBRARY3 = <library name 3>
%setenv HLNK_LIBRARY1 = <library name 1>
%setenv HLNK_LIBRARY?2 = <library name 2>
%setenv HLNK_LIBRARY3 = <library name 3>
%HLNK_LIBRARY1 = <library name 1>
%export HLNK_LIBRARY1
%HLNK_LIBRARY?2 = <library name 2>
%export HLNK_LIBRARY2
%HLNK_LIBRARY3 = <library name 3>
%export HLNK_LIBRARY3

HLNK_TMP Specifies a directory in which the optimizing linkage editor creates temporary
files. If HLNK_TMP is not specified, the temporary files are created in the
current directory.

Specification format:
PC version: C> set HLNK_TMP = <temporary file path name>
UNIX C shell: %setenv HLNK_TMP = <temporary file path name>
UNIX Bourne shell: %HLNK_TMP = <temporary file path name>
%export HLNK_TMP
HLNK_DIR* Specifies an input file storage directory for the optimizing linkage editor.

The search order for files which are specified by an input or a library option
is the current directory then this directory.

However, when a wildcard is used in the file specification, only the current

directory is searched.

Specification format:
PC version:

UNIX C shell;

UNIX Bourne shell:

C> set HLNK_DIR = <input file path name>
[;<input file path name >;...]

%setenv HLNK_DIR = <input file path name>
[:<input file path name >:...]

%HLNK_DIR = <input file path name>
[:<include path name>:...]

Y%export HLNK_DIR

Note: More than one directory can be specified by dividing directories using semicolons or
commas (PC version) or colons (UNIX).

Rev. 1.0, 08/00, page 107 of 890
HITACHI

7.2 Compiler Implicit Declaration

The following implicit #define declarations are made by the compiler according to the option
specification and the version.

Table7.2 Compiler Implicit Declaration

Option Implicit Declaration
cpu =shl #define _SH1

cpu =sh2 #define _SH2

cpu =sh2e #define _SH2E

cpu =sh3 #define _SH3

cpu =sh3e #define _SH3E

cpu =sh4 #define _SH4
pic=1 #define _PIC

endian = big #define _BIG

endian = little #define _LIT

double = float #define _FLT, #define _ _FLT_ _
fpu = single #define _FPS

fpu = double #define _FPD
denormalize = on #define _DON

round = nearest #define _RON

— #define __HITACHI_VERSION_ _*

— #define __HITACHI_ 7

Notes: 1. The value of _ _HITACHI_VERSION_ _is referenced as follows:
C source program: _ _HITACHI_VERSION_ _==aabb
aa: version
bb: revision
Example definition in the compiler:
#define _ _HITACHI_VERSION_ _ 0x0501 //Version 5.1C

#define _ _HITACHI_VERSION_ _ 0x0600 //Version 6.0
2. Always defined.

Rev. 1.0, 08/00, page 108 of 890
HITACHI

Section 8 File Specifications

8.1 Naming Files

A standard file extension is automatically added to the name of a compiled file when omitted. The
standard file extensions used by the Hitachi Development Environment are shown in table 8.1.

Table8.1 Standard File Extensions Used by the Hitachi Development Environment

No. File Extension Description

1 c Source program file written in C

2 cpp, cc, cp Source program file written in C++

3 h Include file

4 lis, Ist** C source program listing file

5 lis, Ipp** C++ source program listing file

6 p C source program preprocessor expansion file

7 pp C++ source program preprocessor expansion file

8 src Assembly source program file

9 exp Assembly program preprocessor expansion file

10 lis Assembly program listing file

11 obj Relocatable object program file

12 rel Relocatable load module file

13 abs Absolute load module file

14 map Linkage map listing file

15 lib Library file

16 Ibp Library listing file

17 mot S-type format

18 hex HEX format

19 bin Binary file

20 fsy Symbol address file for optimizing linkage editor output

21 sni Stack information file

22 pro Profile information file

23 dbg DWARF2-format debugging information file

24 rti Object file including definition that was specified by a file with
extension td

25 cal Information files to be called

Note: The extension is lis for UNIX version, Ist or Ipp for PC version.

Rev. 1.0, 08/00, page 109 of 890
HITACHI

Filenames beginning with rti_ are reserved for the system; do not use those files.

Table 8.2 lists the extensions for files that are output under the tpldir folder generated by each
project.

Table8.2 tpldir Folder Output File

No. File Extension Description

1 td Tentative-defined variable information file
2 ti Template information file

3 pi Parameter information file

4 ii Instance information file

For details on naming files, refer to the user's manual of the host computer because naming rules
vary according to each host computer.

8.2 Compiler Listings

This section covers the contents and format of the compiler formats.

8.21 Structure of Compiler Listings

Table 8.3 shows the structure and contents of compiler listings.

Rev. 1.0, 08/00, page 110 of 890
HITACHI

Table8.3 Structureand Contents of Compiler Listings

Option Specification

Creating List Contents Method*! Default
Source listing Source program listing *2 show=source No output
information show=nosource
Source program listing show=include No output
after include file expansion show=noinclude
*3
Source program listing show=expansion No output
after macro expansion *3 show=noexpansion
Object information Machine code used in show=object Output
object programs and the show=noobject
assembly code
Statistics Total number of errors, show=statistics Output
information number of source program show=nostatistics

lines, size of each section,
and number of symbols

Command Displays file names and Output
specification options specified by the
information command

Notes: 1. All options are valid when listfile option is specified.

2. Source program listings are included in the object information when source and object
suboptions are specified.

3. The source program listing after include file expansion and macro expansion is only
valid when show=source is specified.

8.2.2 Source Listing

The source listing may be output in two ways. When show=noinclude, noexpansion is specified,
the unpreprocessed source program is output. When show=include, expansion is specified, the
preprocessed source program is output. Figures 8.1 and 8.2 show these output formats,
respectively. In addition, figure 8.2 shows the differences between them with bold characters.

Rev. 1.0, 08/00, page 111 of 890
HITACHI

*kkkkkkkkkkkkx SwRC:E Ll ST',\G************

FI LE NAMVE: nD260. c

Seq File Li ne (O e R e e L R - T

1 mD260. ¢ 1 #i ncl ude "header. h"

4 nD260.c 2

5 nmD260. ¢ 3 int sun2(void)

6 nD260.c 4 { intj;

7 nD260.c 5

8 nD260.c 6 #i fdef SMALL

9 nD260.c 7 j =SML_I NT;

10 n0260. ¢ 8 #el se

11 nD260.c 9 j =LRG_I NT;

12 n0D260.c 10 #endi f

13 n0260.c 11

14 _nD260.c 12 return j;/* continuel23456789012345678901234567
(1) (2) (3) +2345678901234567890 */

(7
15 n0260.c 13 }
Figure8.1 SourceListing Output for show = noinclude, noexpansion

Rev. 1.0, 08/00, page 112 of 890

HITACHI

*kkkkkkkkkkkkx SwRC:E Ll ST',\G************

FI LE NAMVE: nD260. c

Seq File Line (O e R e e S R - T

1 nmD260. ¢ 1 #i ncl ude "header. h"

2 header. h 1 #define SM__I NT 1

3 header. h 2 #define LRG I NT 100 (4)

4 n0260.c 2

5 nmD260. c 3 int sun2(void)

6 nD260.c 4 { int j;

7 nD260.c 5

8 nm0260. c 6 #i f def SMALL

9 nD260.c 7 X j =SML_I NT;

10 nmD260. ¢ 8 (5) #el se

11 nD260.c 9 E j =100;

12 nD260.c 10 (6) #endif

13 nD260.c 11

14 n0260. c 12 return j;/* continuel23456789012345678901234567
(1) (2) (3) +2345678901234564890 */

(7
15 nD260.c 13 }
Figure8.2 Source Listing Output for show=include, expansion
Description:

(1) Listing line number

(2) Source program file name or include file name

(3) Line number in source program or include file

(4) Source program lines resulting from an include file expansion when show=includeis
specified.

(5) Source program lines that are not to be compiled due to conditional compile directives such as
#ifdef and #elif being marked with an X when show=expansion is specified.

(6) Source program lines containing a macro expansion #define directives being marked with an E
when show=expansion is specified.

(7) If asource program line islonger than the maximum listing line, the continuation symbol () is
used to indicate that the source program line is extended over two or more listing lines.

Rev. 1.0, 08/00, page 113 of 890
HITACHI

8.2.3 Object Listing

The object listing can be output in two ways. When show = sour ce, object is specified, the source
program is output. When show = nosour ce, object is specified, the source program is not output.

Figures 8.3 and 8.4 show examples of these listings.

*kkkkkkkkkkkk m]EU LI STI’\K;************

FI LE NAME: nD251. c

SCT OFFSET CODE C LABEL | NSTRUCTI ON OPERAND COMVENT
(1) (2) (3) (4) (5)
nm0251. c 1 extern int multipli(int);
nm0251. ¢
nD251. c 3 int multipli(int x)
P 00000000 _multipli: ;function: multipli

;frame size=16 (7)
;used runtine library nane:

; mul i (8)

00000000 4F22 STS. L PR, R15
00000002 7FF4 ADD #-12, R15
00000004 1F42 MOV. L R4, @ 8, R15)

nD251. ¢ 4 {

nD251. ¢ 5 int i;

mD251. c 6 int j

nD251. ¢ 7

nm0251. ¢ 8 j =1,
00000006 E201 MoV #1, R2
00000008 2F22 MOV. L R2, @15

nD251. c 9 for(i=1;i<=x;i++){
0000000A E301 MoV #1, R3
0000000C 1F31 MOV. L R3, @ 4, R15)
0000000E A009 BRA L213
00000010 0009 NOP
00000012 L214:

nD251. ¢ 10 j*=ig

00000012 50F1 MOV. L @4, R15), RO
00000014 61F2 MoV @r15, R1
00000016 D30A MOV. L L216+2, R3 s o_muli
00000018 430B JSR @3

Figure8.3 Object Listing Output for show = sour ce, object

Rev. 1.0, 08/00, page 114 of 890
HITACHI

*kkkkkkkkkkkk m]EU LI STI’\K;************

FI LE NAME: nD251.c

SCT OFFSET CODE C LABEL I NSTRUCTI ON OPERAND COVIVENT
(1) (2) (3) (4) (5)
P ;File nD251. ¢ ,Line 3 ; bl ock
00000000 _multipli: (6) ;function: multipli

;frame size=16 (7)
;used runtine library nane:

; mul i (8)

00000000 4F22 STS. L PR, @15
00000002 TFF4 ADD #-12, R15
00000004 1F42 MOV. L R4, @8, R15)

;File nD251.c ,Line 4 ; bl ock

;File nD251. ¢ ,Line 8 ; expressi on statenment
00000006 E201 MoV #1, R2
00000008 2F22 MOV. L R2, @15

;File nD251. ¢ ,Line 9 ; for
0000000A E301 MoV #1, R3
0000000C 1F31 MOV. L R3, @4, R15)
0000000E A009 BRA L213
00000010 0009 NOP
00000012 L214:

;File nD251.c ,Line 9 ; bl ock

;File nD251. ¢ , Line 10 ; expressi on st atenent
00000012 50F1 MOV. L @4, R15), RO
00000014 61F2 MOV. L @r15, R1
00000016 D30A MOV. L L216+2, R3 ; _ _nmuli
00000018 430B JSR @3

Figure8.4 Object Listing Output for show = nosour ce, object

Description:

(1) Section name (P, C, D, B, C$INIT, and C$VTBL) of each section

(2) Offset address relative to the beginning of each section

(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine language

(5) Comments corresponding to the program (only output when not optimized; however, labels are
always output)

(6) Line information of the program (only output when not optimized)

(7) Stack frame size in bytes

(8) Routine name that is being executed

Rev. 1.0, 08/00, page 115 of 890
HITACHI

8.24 Statistics | nfor mation

Figure 8.5 shows an example of statistics information.

xasxkxxk STATI STICS | NFORMATI ON * %% 5%k x ¢

kkkkkhkkkkkk ERR(RINF(R’\M\TIO\I********** (1)
NUVBER OF ERRORS: 0

NUVBER OF WARNI NGS: 0

NUVBER OF | NFORMATI ONS: 0

*xxxxxkx SOURCE LI NE | NFORMATI ON * % %% x (2)
COVPI LED SOURCE LI NE: 13

#xxxxxkx SECT| ON SI ZE | NFORMATI ON * %% %% % (3)
PROGRAM SECTI ON(P) : 00000044 Byt e(s)
CONSTANT ~ SECTION(O) : 00000000 Byt e(s)
DATA SECTI ON(D) : 00000000 Byt e(s)

BSS SECTI ON(B) : 00000000 Byt e(s)
TOTAL PROGRAM SI ZE: 00000044 Byt e(s)

* ok kkkkkkkk LABEL |NFm’\MT|O\l * ok kkkkkk kK (4)

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 1
NUMBER OF EXTERNAL DEFI NI TI ON SYMBOLS: 1
NUMBER OF | NTERNAL/ EXTERNAL SYMBOLS: 6

Figure8.5 StatisticsInformation

Rev. 1.0, 08/00, page 116 of 890
HITACHI

Description:

(1) Total number of messages by the level
(2) Number of compiled lines from the source file
(3) Size of each section and total size of sections

(4) Number of external reference symbols, number of external definition symbols, and total
number of internal and external labels

Note NUMBER OF INFORMATIONS in messages by the level ((1) above) is not output when
message option is not specified. Section size information (3) and label information (4) are
not output if an error-level error or afatal-level error has occurred or when noobj ect
option is specified. In addition, section size information (3) is output (indicated as"1") or
not output (indicated as "0") according to its specification when code=asmcode option is
specified.

8.25 Command Line Specification

The file names and options specified on the command line when the compiler isinvoked are
displayed. Figure 8.6 shows an example of command line specification information.

*** COMVAND PARAMETER ***

-listfile test.c

Figure8.6 Command Line Specification

Rev. 1.0, 08/00, page 117 of 890
HITACHI

8.3 Assembly Listings

This section covers the contents and format of the assembly listing.

831 Structure of Assembly Listing
Table 8.4 shows the structure and contents of the assembly listing.

Table 8.4 Structure and Contents of Assembly Listing

Creating List Contents Option Default

Source list information Specifies the source program source Output
information

Cross reference list Specifies the source-program cross_ Output

information symbol information reference

Section information list Specifies the source-program section Output

section information

Note: All list options are enabled when list option is specified.

8.3.2 Source List Information

The source list information is output. Figure 8.7 shows an example of the source list information.

Rev. 1.0, 08/00, page 118 of 890
HITACHI

PROGRAM NAME = " SAMPLE" (7)
1 1 . HEADI NG """ SAMPLE"""
2 2 PO NT . ASSI GNA 16
3 3 Parmi .REG (RO)
4 4 Parnm?2 . REG (R1)
5 5 WORK1 . REG (R2)
6 6 WORK2 . REG (R3)
7 7 WORK3 . REG (R4)
8 8 WORK4 . REG (R5)
20 00000000 9 11 FIX MIL:
21 00000000 2107 10 11 DI VOS Par ni, Par n2
22 00000002 0229 1111 MOVT WORK1
23 00000004 4011 12 11 CVWP/ PZ Par mlL
24 00000006 8900 1311 BT MJLO1
25 00000008 600B 14 11 NEG Parml, Par nil
(1) (2 (3) (4) (5) (6)
231 *xxxx BEGQ N POOL ****+ ~
232 00000180 00018000 DATA FOR SOURCE- LI NE 17 (8)
233 00000184 00024000 DATA FOR SOURCE- LI NE 18
234 00000188 00030000 DATA FOR SOURCE- LI NE 19
235 0000018C 00050000 DATA FOR SOURCE- LI NE 20
236 *rkxx END POOL ****+ /
237 35 . END
****TOTAL ERRORS 0
**** TOTAL WARNI NGS 0

(9)

Figure8.7 SourceProgram Listing

Rev. 1.0, 08/00, page 119 of 890
HITACHI

Description:

(1) Line numbers (in decimal)
(2) The value of the location counter (in hexadecimal)

(3) The object code (in hexadecimal). The size of the reserved areain bytesislisted for areas
reserved with the .RES, .SRES, .SRESC, .SRESZ, and .FRES assembler directives.

(4) Source line numbers (in decimal)

(5) Expansion type. Whether the statement is expanded by file inclusion, conditional assembly
function, or macro function islisted.

In: Fileinclusion (n indicates the nest level).
C. Stisfied conditional assembly, performed iterated expansion, or satisfied conditional
iterated expansion
M: Macro expansion
(6) The source statements
(7) The header setup with the . HEADING assembler directive.
(8) Theliteral pool

(9) Thetotal number of errors and warnings. Error messages are listed on the line following the
source statement that caused the error.

Rev. 1.0, 08/00, page 120 of 890
HITACHI

8.3.3 Cross Reference Listing

The cross reference information is output. Figure 8.8 shows an example of the cross reference
information listing.

*** CROSS REFERENCE LI ST

NAME SECTION ATTR VALUE SEQUENCE

FI X_DI V SAMPLE 00000088 91* 223

FI X_MJL SAMPLE 00000000 19* 218

MULO1 SAMPLE 0000000A 23 25*

MJLO2 SAMPLE 00000010 26 28*

MJLO3 SAMPLE 00000082 87 89*

Par ml REG 3* 20 22 24 24
28 29 29 31 32
32 35 36 36 38
40 45 49 55 57
59 61 63 65 67
69 71 73 75 77
79 81 83 85 88
88 93 94 99 101

Par n2 REG 4* 20 25 27 27
28 31 33 33 35
38 41 43 44 46
48 54 56 58 60
62 64 66 68 70

(1) (2) (3) (4) (5)

Figure8.8 CrossReferencelisting
Description:

(1) The symbol name
(2) The name of the section that includes the symbol (first eight characters)
(3) The symbol attribute
EXPT: Export symbol
IMPT: Import symbol
SCT: Section name
REG: Symbol defined with the .REG assembler directive
FREG: Symbol defined with the .FREG assembler directive
ASGN: Symbol defined with the .ASSIGN assembler directive
EQU: Symbol defined with the .EQU assembler directive
MDEF: Symbol defined two or more times
UDEF:; Undefined symbol

Rev. 1.0, 08/00, page 121 of 890
HITACHI

No symbol attribute (blank): A symbol other than those listed above
(4) The value of symbol (in hexadecimal)

(5) Thelist line numbers (in decimal) of the source statements where the symbol is defined or
referenced. The line number marked with an asterisk isthe line where the symbol is defined.

8.34 Section Information Listing

The section information is output. Figure 8.9 shows an example of the section information output.

**x SECTI ON DATA LI ST
SECTI ON ATTRI BUTE S| ZE START
SAMPLE REL - CODE 000000190

(D (2) (3) (4)

Figure8.9 Section Information Listing
Description:

(1) The section name
(2) The section type
REL: Relative address section
ABS: Absolute address section
CODE: Code section
DATA: Datasection
STACK: Stack section
DUMMY: Dummy section
(3) The section size (in hexadecimal, byte units)
(4) The start address of absolute address sections

Rev. 1.0, 08/00, page 122 of 890
HITACHI

84 Linkage Listings

This section covers the contents and format of the linkage listing output by the optimizing linkage
editor.

8.4.1 Structure of Linkage Listing
Table 8.5 shows the structure and contents of the linkage listing.

Table8.5 Structure and Contentsof Linkage Listing

Creating List Contents Suboption Default

Option information Displays option strings — Output
specified by a command line
or subcommand

Error information Displays error messages — Output
Linkage map information Displays a section name, — Output
start/end addresses, size, and
type
Symbol information Displays static definition show = Not output

symbol address, size, and type symbol
in order based on the address.

When the show=reference show = Not output
option is specified, displays a reference

symbol reference count and

optimization information in

addition to the above

information.
Symbol deletion Displays symbols deleted by show = Not output
optimization information optimization symbol
Variable access Displays symbol reference show = Not output
optimization symbol counts in 8-bit/16-bit absolute reference
information addressing mode.
Function access Displays symbol reference show = Not output
optimization symbol counts. reference

information

Note: The show option is valid only when list option is specified.

Rev. 1.0, 08/00, page 123 of 890
HITACHI

8.4.2 Option Information

Option information displays option strings specified by a command line or a subcommand file.
The option information is output as shown in figure 8.10 when optInk -sub=test.sub -list -show is
specified.

(test.sub contents)
I NPUT t est. obj

* Kk Q:)tions * Kk

-sub = test.sub

| NPUT test. obj (2) (1)
-list

- show

Figure 8.10 Option Information Output Example (Linkage Listing)
Description:
(1) Outputs option strings specified by a command line or a subcommand in the specified order.
(2) Subcommand in the test.sub subcommand file
8.4.3 Error Information

Error information outputs an error message as shown in figure 8.11.

*** Error information ***

** | 2310 (E) Undefined external synbol”strcnp” referred to in (1)
"test.obj”

Figure8.11 Error Information Output Example (Linkage Listing)
Description:

(1) Outputs an error message.

Rev. 1.0, 08/00, page 124 of 890
HITACHI

8.4.4 Linkage Map Information

Linkage map information outputs section start/end addresses, size, and type in order of addresses
in the format shown in figure 8.12.

*** Mappi ng List ***

SECTI ON START END SIZE ALIGN
(1) (2) (3) (4 (9

P 00000000 000004d6 4d6 2

C 000004d6 00000533 5d 2

D 00000534 0000053c 8 2

B 0000053c 00004112 3bd6 2

Figure8.12 Linkage Map Information Output Example (Linkage Listing)
Description:

(1) Section name

(2) Start address

(3) End address

(4) Sectionsize

(5) Section boundary alignment

Rev. 1.0, 08/00, page 125 of 890
HITACHI

8.4.5 Symbol Information

When the show=symbol option is specified, symbol information lists addresses of externally

defined symbols or static internally defined symbols, sizes, and typesin order of address. When
the show=r efer ence option is specified, symbol information lists symbol reference counts and
optimization information in addition to the information listed when the show=symbol option is

specified. A symbol information output exampleis shown in figure 8.13.

*** Synbol List ***

SECTION = (1) START END Sl ZE
FILE = (2) (3) (4 (5)
SYMBOL ADDR SIZE INFO COUNTS oPT
(6) (7 (8) (9) (10) (11)
SECTION = P
FI LE = test. obj
00000000 00000428 428
_main
00000000 2 func ,g 0
_mal | oc
00000000 32 func ,1 0
FI LE=nvn3
00000428 00000490 68
$MN#3
00000428 0 none ,g 0
Figure8.13 Symbol Information Output Example (Linkage Listing)
Description:

(1) Section name

(2) Filename

(3) Start address of a section included in the file indicated by (2) file name above
(4) End address of a section included in the file indicated by (2) file name above
(5) Section size of asection included in thefile indicated by (2) file name above

(6) Symbol name
(7) Symbol address

(8) Symbol size

Rev. 1.0, 08/00, page 126 of 890

HITACHI

(9) Symbol type as shown below
Datatype: func Function name
data Variable name
entry Entry function name
none Undefined (label, assembler symbol)
Declaration type: g External definition
I Internal definition
(10) Symbol reference count only when the show=r efer ence option is specified.
* Displayed when the show=r efer ence option is not specified.
(11) Optimization information as shown below.
ch Symbol modified by optimization
cr Symbol created by optimization
mv Symbol moved by optimization

8.4.6 Symbol Deletion Optimization Information

Symbol deletion optimization information lists the size and type of symbols deleted by symbol
deletion optimization (optimize=symbol_delete) as shown in figure 8.14.

*** Delete Synmbols ***

SYMBOL SI ZE | NFO
(1) (2) (3)
_Version
4 data ,g

Figure8.14 Symbol Deletion Information Output (Linkage Listing)
Description:

(1) Delete symbol name
(2) Delete symbol size
(3) Delete symbol type as shown below

Datatype: func Function name
data Variable name
Declaration type: g External definition

| Internal definition

Rev. 1.0, 08/00, page 127 of 890
HITACHI

8.4.7 Variable Access Optimization Symbol Information

Thisinformation is not output when the SuperH RISC engine microcomputer is used (figure 8.15).

*** Variable Accessible with Abs8 ***

SYMBOL SI ZE COUNTS OPTIM ZE

*** Variable Accessible with Absl6 ***

SYMBOL SI ZE COUNTS OPTIM ZE

Figure8.15 Output Example of Variable Access Optimization Symbol I nformation
(Linkage Listing)

8.4.8 Function Access Optimization Symbol Information

Thisinformation is not output when the SuperH RISC engine microcomputer is used (figure 8.16).

*** Function Call ***

SYMBOL COUNTS OPTIM ZE

Figure8.16 Output Example of Function Access Optimization Symbol Information
(Linkage Listing)

8.5 Library Listings

This section covers the contents and format of the library listing output by the optimizing linkage
editor.

85.1 Structure of Library Listing

Table 8.6 shows the structure and contents of the library listing.

Rev. 1.0, 08/00, page 128 of 890
HITACHI

Table 8.6 Structureand Contentsof Library Listing

Creating List Contents Suboption Default*
Option information Displays option strings — Output

specified by a command line

or subcommand
Error information Displays error messages — Output
Library information Displays library information — Output
Information of module, Displays module within the — Output
section, and symbol library
within library

When the show=symbol show= Not output

option is specified, displaysa symbol

list of symbol names in a

module within the library

Not output
When the show=section show=
option is specified, displays section

lists of section names and
symbol names in a module
within the library

Note: The show option is enabled only when list option is specified.

HITACHI

Rev. 1.0, 08/00, page 129 of 890

8.5.2 Option Information

Option information displays option strings specified by a command line or a subcommand file.
Option information is output as shown in figure 8.17 when optink —sub = test.sub -list -show is
specified.

(test.sub contents)

form library
in adhry. obj
output test.lib

* k% Q)tIOnS * k%

-sub = test.sub

form library

in adhry. obj] (2) (1)
out put test.lib

-list
- show

Figure8.17 Option Information Output Example (Library Listing)
Description:

(1) Outputs option strings specified by acommand line or a subcommand in the specified order.
(2) Subcommand in the test.sub subcommand file

Rev. 1.0, 08/00, page 130 of 890
HITACHI

8.5.3 Error Information

Error information outputs an error message as shown in figure 8.18.

*** Error information ***

** 11200 (W) Backed up file ”main_lib” into “main.lbk” (¢H)

Figure8.18 Error Information Output Example (Library Listing)
Description:

(1) Outputs an error message.

85.4 Library Information

Library information outputs library type in the format shown in figure 8.19.

*** |jbrary Information ***

LI BRARY NAME = test.lib (1)

CPU = SuperH (2)
ENDI AN = Bi g (3)
ATTRI BUTE = system (4)
NUMBER OF MCDULE = 1 (5)

Figure8.19 Library Information Output Example (Library Listing)
Description:

(1) Library name

(2) CPU name

(3) Endian type

(4) Library file attribute either system library or user library
(5) Number of modules within the library

Rev. 1.0, 08/00, page 131 of 890
HITACHI

855 Module, Section, and Symbol I nformation within Library
Thisinformation lists modules within the library.

When the show=symbol option is specified, symbol namesin amodule within the library are
listed. When the show=section option is specified, section names and symbol namesin a module
within the library are listed.

Figure 8.20 shows an output example of module, section and symbol information within alibrary.

*** |]jbrary List ***

MODULE LAST UPDATE
(1) (2)
SECTI ON

(3)
SYMBOL
(4)

adhry
29- Feb- 2000 12: 34: 56
P
_main
_ProcO
_Procl
C
D
_Version
B
_Intdob
_Chard ob

Figure8.20 Module, Section, and Symbol Information Output Example (Library Listing)
Description:

(1) Module name

(2) Module definition date
If the module is updated, the latest module update date is displayed.

(3) Section name within a module
(4) Symbol within a section

Rev. 1.0, 08/00, page 132 of 890
HITACHI

Section 9 Programming

91 Program Structure

9.11 Sections

Each of the regions for execution instructions and data of the object programs output by the
C/C++ compiler or assembler comprises a section. A section is the smallest unit for data
placement in memory. Sections have the following properties.

* Section attributes

code Stores execution instructions
data Stores data
stack Stack area

e Format type
Relative-address format: A section that can be relocated by the optimizing linkage editor.

Absolute-address format: A section the address of which has been determined; it cannot be
relocated by the optimizing linkage editor.

e [nitia values

Specifies whether there are initial values at the start of program execution. Data which has
initial values and data which does not have initial values cannot be included in the same
section. If thereis even oneinitial value, the area without initial valuesisinitialized to zero.

* Write operations
Specifies whether write operations are or are not possible on program execution.
* Boundary aignment

Corrections to addresses assigned to sections. The optimizing linkage editor corrects addresses
such that they are multiples of the boundary alignment.

912 C/C++ Program Sections

The correspondence between memory areas and sections for C/C++ programs and the standard
library is described in table 9.1.

Rev. 1.0, 08/00, page 133 of 890
HITACHI

Table 9.1 Summary of Memory Area Typesand Their Properties

Section Initial Values
Format Write Align-
Name Name Attribute Type Operations ment Description
Program area p* code Relative Yes 4% Stores machine code
No bytes
Constant area c+ data Relative Yes 4 Stores const-type data
NoO bytes
Initialized data area D* data Relative Yes 4 Stores data with initial values
Yes bytes
Uninitialized data B*' data Relative No 4 Stores data without initial
area Yes bytes values
GBR section $GO data Relative Yes 4 Stores data with initial values
bytes specified by #pragma
Yes gbr_base. If data does not
have initial values, 0 is stored.
GBR section $G1 data Relative Yes 4 Stores data with initial values
bytes specified by #pragma
Yes gbr_basel. If data does not
have initial values, 0 is stored.
C++ initial CSINIT data Relative Yes 4 Stores addresses of
processing/ bytes constructors and destructors
postprocessing No called for global class objects
data area
C++ virtual function C$VTBL data Relative Yes 4 Stores data for calling the
table area No bytes virtual function when a virtual
function exists in the class
declaration
Stack area O Relative No 4 Area necessary for program
bytes execution (see section 9.2.1
Yes (2), Dynamic Area Allocation)
Heap area O Relative No O Area used by library functions
malloc, realloc, calloc, new
Yes (see section 9.2.1 (2),

Dynamic Area Allocation)

Notes 1: Section names can be switched in the section option or extension #pragma section.
2. Becomes 16 bytes when the align16 option is specified.

Rev. 1.0, 08/00, page 134 of 890

HITACHI

Example 1: A program exampleis used to demonstrate the correspondence between a C program
and the compiler-generated sections.

Section name

int a=1; Program area (main() {...}) P

char b;

const int c=0: Constant area (c) c

voi d mai n(){ — D
Initialized data area (a)

} B

Uninitialized data area (b)

Areas generated by the

C program .
prog compiler and stored data

Example 2: A program example is used to demonstrate the correspondence between a C++
program and the compiler-generated sections.

Section name

class A Program area (f() {...}) p
int m
A(int p); Constant area (c) C
~A();
}: Initialized data area (d) D
A a(l); o
) Uninitialized data areas (a,b) B
int b;
extern const char c='a’; Initial processing/postprocessing data | C$INIT
int d=1; areas (&A:A, &A:~A)
void f(){...}
C++ program Areas generated by the

compiler and stored data

Rev. 1.0, 08/00, page 135 of 890
HITACHI

9.1.3 Assembly Program Sections

In assembly programs, the .section directives are used to begin sections and declare attributes and
formats. The format for declaration of the .section directivesis as follows; for details refer to the
referencesin section 11.4, Assembler Directives.

.section <section name>[, <section attribute> [, <format type>]]

<format type>: Inthecaseof arelative address section, align = < boundary alignment>
In the case of an absolute address section, |locate = <address val ue>

Rev. 1.0, 08/00, page 136 of 890
HITACHI

Example: An example of an assembly program section declaration appears below.

S| ZE:

START:

LOCP:

EXIT:

LI TERAL:

CONST:

DATA:

. SECTI ON

MOV. L
MOV. L
MOV. L

CWP/ PL
BF
MOV. B
MOV. B
ADD
ADD
BRA

SLEEP

. DATA. L

. DATA. L

. SECTI ON

. DATA. B

. SECTI ON

.RES. B
. END

SH2
DBG
8

A, CODE, ALI G\=4

LI TERAL, RO
LI TERAL+4, R1
#SI ZE, R2

R2

EXI T

@0+, R3

R3, @1

#-1, R2

#1, R1
LooP

CONST
DATA

B, DATA, LOCATE=H 00002000 1 (2)

H 01,H 02, H 03, H 04, H 05, H 06, H 07, H 08

C, STACK, ALI G\=4

8

(1)

; (3)

HITACHI

Rev. 1.0, 08/00, page 137 of 890

(1) Declares a code section with section name A, boundary alignment 4, relative address format.

(2) Declares a data section with section name B, allocated address H'2000, absolute address
format.

(3) Declares a stack section with section name C, boundary alignment 4, relative address format.
9.14 Joining Sections

The optimizing linkage editor joins the same sections within input object programs, and all ocates
addresses specified by the start option.

(1) The same section namesin different files are allocated contiguously in the order of file input.

"filel.obj" "file2.0bj" "file3.obj"
Section A Section D Section C
Section B Section A Section B
Section C

v

Options specified at linkage

input filel.obj file2.0bj file3.obj

start A, B/ 1000, C, D/ 8000

v

filel. section A

1000

file2. section A

filel. section B

file3. section B

8000
filel. section C

file3. section C

file2. section D

Rev. 1.0, 08/00, page 138 of 890
HITACHI

(2) Sections with the same name but different alignments are joined after alignment. Section

alignment uses the larger of the section alignments.

"filel.obj" "file2. obj"
Section A Section A
(align=2,size=70) (align=4,size=100)

v

Options specified at linkage

input filel.obj file2. obj

start A/ 1000

v

1000

filel. section A

1072

file2. section A

HITACHI

Alignment = 4
Size =172

Rev. 1.0, 08/00, page 139 of 890

(3) When sections with the same name include both absol ute-address and rel ative-address formats,
relative-address objects are joined following absolute-address objects. Even when relocatable
file output is specified(for m=r elocate option), the section in question becomes an absolute-
address section.

“filel.obj" “file2 obj"
Section A Section A
(align=4,size=100) (locate=1000,size=70)

v

Options specified at linkage

input filel.obj file2.obj

v

file2. section A Absolute-address section

1000

1072 Size =172
filel. section A

(4) Rulesfor the order of joining objects within the same section name are as follows.

a. Order specified by the input option or input files on the command line

b. Order specified for the user library by the library option and order of input of modules
within the library

¢. Order specified for the system library by the library option and order of input of modules
within the library

d. Order specified for libraries by environment variables (HLNK _LIBRARY 1 to 3) and order
of input of modules within the library

Rev. 1.0, 08/00, page 140 of 890
HITACHI

"filel.obj" "usrl.lib" "syslibl.lib"
Section A Module 1 (Section A) Module 5 (Section A)
Module 2 (Section A) Module 6 (Section A)
"file2.obj" "usr2.1lib" "syslib2.1ib"
Section A Module 3 (Section A) Module 7 (Section A)

Module 4 (Section A)

Module 8 (Section A)

v

Options specified at linkage

Environment variables

i nput filel. obj
library syslibl.lib usrl.lib

Start A/ 1000

file2. obj HLNK_LI BRARY1=sysl i b2.1i b

HLNK_LI BRARY2=usr2.1i b

1000

v

filel. section A

file2. section A

Modulel. section A

Module2. section A

Module5. section A

Module6. section A

Module?. section A

Module8. section A

Module3. section A

Module4. section A

HITACHI

Rev. 1.0, 08/00, page 141 of 890

9.2 Creation of Initial Setting Programs

Here methods of installing embedded programs for systems employing the SuperH RISC engine
microcomputers are explained.

Toinstall an embedded a program in a system, the following preparations are necessary.

e Memory allocation
Each section, the stack area, and the heap area must be allocated to system ROM and RAM.
» Settings for the program execution environment
Processing to set the program execution environment includes register initialization, memory
initialization, and program startup.

In addition, when using 1/O and other C/C++ library functions, the library must beinitialized
during preparation of the execution environment. In particular, when using 1/O (stdio.h, ios,
streambuf, istream, ostream) and memory allocation (stdlib.h, new), low-level 1/O routines and
memory allocation routines must be prepared.

When using C library functions for program termination (the exit, atexit, abort functions), these
functions must be prepared separately according to the user system.

In section 9.2.1, the method used to determine addresses for program memory is explained, and
actual examples are used to describe the method for specifying options in the optimizing linkage
editor for determining addresses.

In section 9.2.2, execution environment settings are explained, and an actual example of a
program to set the execution environment is described.

Library function initialization processing, preparation of low-level interface routines, and
examples of preparation of functions for termination processing are also explained.

921 Memory Allocation

Toinstall an object program generated by the compiler on a system, determine the size of each
memory area, and allocate the areas appropriately to the memory addresses.

Some memory areas, such as the area used to store machine code and the area used to store data
declared using external definitions or static data members, are allocated statically. Other memory
areas, such asthe stack area, are allocated dynamically.

This section describes how to allocate each areain memory.

Rev. 1.0, 08/00, page 142 of 890
HITACHI

(1) Static Memory Allocation
(a) Contents of static memory
Sections other than the stack area and heap area are all ocated statically.

Each of the sectionsin a C/C++ program (program area, constant area, initialized data area,
uninitialized data area, C++ initialization processing/postprocessing data area and C++
virtual function table area) is allocated statically.

(b) Calculation of size
The size of static memory is the sum of the sizes of the object programs generated by the
compiler and assembler and the sizes of library functions used by the C/C++ program.
After linking object programs, the sizes of each section, including libraries, are output to
the linkage map information within the linkage listing, and so the size of static memory can
be determined.

Figure 9.1 shows an example of linkage map information within the linkage listing.

* * * Mapping list * * *

SECTI ON START END SIZE ALIGN
(1) (2) (3) (4) (5)
P 00000000 000004d6 4d6 2
C 000004d6 00000533 5d 2
D 00000534 0000053¢ 8 2
B 0000053¢ 00004112 3bd6 2

Figure9.1 Exampleof Linkage Map Information within the Linkage Listing

Section sizes of compilation units and assembly units are output to the compile list
statistical information and assembly list section information. An example of compile list
statistical information is shown in figure 9.2, and an example of assembly list section
information is shown in figure 9.3.

* %k x x % x SECTION S| ZE | NFORVATI ON * * * * * * *
PROGRAM SECTI ON(P) : 0000004A Byt e(s)
CONSTANT SECTION(C) : 00000018 Byte(s)
DATA SECTI ON(D) : 00000004 Byt e(s)
BSS SECTI ON(B) : 00000004 Byt e(s)

TOTAL PROGRAM S| ZE : 0000006A Byt e('s)

Figure9.2 Example of Compile List Statistical | nformation

Rev. 1.0, 08/00, page 143 of 890
HITACHI

*** SECTI ON DATA LI ST

SECTI ON ATTRI BUTE Sl ZE START
P REL - CODE 000000604
D REL- DATA 000000008
C REL- DATA 00000005D
B REL- DATA 000003BD6

Figure 9.3 Exampleof Assembly List Section Information

When not using astandard library, the total of section sizesfor filesis the size of static
area.

If the standard library is used, add the memory area used by the library functions to the
memory area size of each section. The standard library includes C library functions based
on the C language specifications and arithmetic routines (runtime routines) required for
C/C++ program execution. Accordingly, the standard library may be necessary even if
library functions are not used in the C/C++ source program.

The runtime routines used by the C/C++ programs are output as external reference symbols
in the assembly programs generated by the compiler (code=asmcode option). The user can
see the runtime routine names used in the C/C++ programs through the external reference
symbols. The runtime routine names can also be checked by the use of the listfile option.
The following shows the examples.

* C/C++ program

f(int a, int b)

{

al/=b;
return a;

Rev. 1.0, 08/00, page 144 of 890

HITACHI

e Assembly program output by the compiler

L218:

. | MPORT _ _divls ;(External reference declaration of runtime routine)
. EXPORT _f
. SECTI ON P, CODE, ALI G\=4

;function: f
;frame size=4
;used runtine |ibrary nane:
_ _divls

STS.L PR @R15

MoV R5, RO

MOV.L L218,R3 ; _ _divls

JSR @3

MoV R4, R1

LDS. L @Rr15+, PR

RTS

NOP

. DATA. L _ divls
. END

(c) ROM, RAM allocation

When preparing a program for systems with ROM, whether sections are allocated to RAM
or to ROM is determined by whether there are initial values and whether write operations
are enabled.

When preparing the sections of a C/C++ program for systems with ROM, sections are
alocated to ROM or to RAM asfollows.

e Program area (section P) ROM

« Constant areas (sections C, $G0, $G1) ROM

» Uninitialized data areas (sections B, $G0, $G1) RAM

« Initialized data areas (sections D, $G0, $G1) ROM, RAM (see (d) below)
+ Initialization processing/postprocessing data area* * (section C$INIT) ROM
 Virtual function table area*” (section C3VTBL) ROM

Notes: 1. Generated by the compiler when a C++ program has a global class object.

2. Generated by the compiler when a C++ program has avirtual function declaration
3. $GO0 and $GL1 can be assigned to only one of the above areas.

Rev. 1.0, 08/00, page 145 of 890
HITACHI

(d) Allocation of initialized data areas

Sections which have initial values and can be altered on program execution, such as
initialized data areas, are placed in ROM at linkage and copied to RAM at the start of
program execution. Hence the rom option of the optimizing linkage editor must be used to
reserve the same memory area both in ROM and in RAM. For an example of this, refer to
"(e) Example of memory allocation and address specification at linkage" below. Initial
settings for sections to be copied from ROM to RAM are explained in section 9.2.2 (2),
Initial Settings.

(e) Example of memory allocation and address specification at linkage

When creating an absolute load module, addresses of allocated area are specified for each
section using an optimizing linkage editor option or a subcommand. Below, examples of
static memory allocation and of address specification at linkage are explained.

Figure 9.4 shows an example of allocation of static memory areas.

0x000000
Interrupt vector
0x000400
Program area (P)
Constant area (C) Internal ROM
Initialized data area (D)
0x020000
Initialized data area (R)
RAM
Uninitialized data area (B)
OxFFECO00
Dynamic area Internal RAM
OXFFFBFF

P, C, D, B: Default section names generated by the compiler.

R: Section name specified by ROM support function of the optimizing linkage editor.

Figure 9.4 Example of Static Memory Allocation

When allocating memory as shown in figure 9.4, the following subcommands are specified
at linkage.

Rev. 1.0, 08/00, page 146 of 890
HITACHI

ROMADY R . [1]
STARTAP, C, D/ 400, R, B/ 20000 .. [2]

Explanation [1] Space for section R, of size equal to section D, is allocated in the output
load module. When symbols allocated to section D are referenced,
relocation is performed as if the addresses are in section R. Section D and
section R are the names of initialized data sections written to ROM and to
RAM respectively.

Explanation [2] Sections P, C and D are allocated to contiguous areas of memory in
internal ROM starting from address 0x400. Sections R and B are
allocated to contiguous memory areas starting from RAM address
0x20000.

(2) Dynamic memory allocation
(a) Contents of dynamic memory
The following two types of dynamic memory areas are used in C/C++ programs:
e Stack area
e Heap area (for memory allocation of library functions)
(b) Calculation of stack areasize

The maximum stack area size used by C/C++ programs and standard libraries can be
calculated by specifying the stack option of the optimizing linkage editor to output a stack
information file, and using the stack analysis tool. For details of use of the stack analysis
tool, see section 6, Stack Analysis Tool Manipulation.
The stack area used by an assembly program cannot be calculated by the stack analysis
tool. Instead, the stack usage of an assembly program should be computed by the method
outlined below for calculating the stack usage of a C/C++ program, and the result should
be added to the stack usage calculated by the stack analysistool.
» Stack Usage Calculation of the C/C++ Program
The stack area used in C/C++ programsis allocated each time afunction iscalled and is
deallocated each time afunction isreturned. Thetotal stack areasizeis calculated
based on the stack size used by each function and the nesting of function calls.
» Stack AreaUsed by Each Function
The object list (frame size) output by the compiler determines the stack size used by
each function. The following example shows the object list, stack allocation, and stack
size calculation method.
* Example
The following shows the object list and stack size calculation in a C program.
The same calculation method is also applicable to C++ programs.

Rev. 1.0, 08/00, page 147 of 890
HITACHI

extern int h(char, int *, double);
int h(char a, register int *b, double c)

{

char *d;

d= &a;
h(*d, b, c);
{

register int i;

i= *d;

return i;

kkkkkkhkkkhkkkk mJECT LI STl’\G************
FI LE NAME: nD251.c

SCT OFFSET CODE C LABEL | NSTRUCTI ON OPERAND COMVENT
00000000 _h: ;function: h
;frame size=20
00000000 2FE6 MOV. L R14, @ R15
00000002 4F22 STS.L PR @RI15
Lower T
address

R15(SP) —> 0

Area used
within a rame
function size
20
Higher l Stack
address

Rev. 1.0, 08/00, page 148 of 890
HITACHI

The size of the stack areaused by a function isequal to frame size. Therefore, in the
above example, the stack size used by the function h is 20 bytes which is shown as
frame size = 20 in COMMENT of the object listing.

For details on the parameter allocated to the parameter area on the stack, refer to section
9.3.2 (4), Setting and Referencing Parameters and Return Values.
» Stack size calculation

The following example shows a stack size calculation depending on the function call
nesting.

« Example
Figure 9.5 shows the function call nestings and stack size.

main ()

Function Name Stack Size (Bytes)

main 24

f 32
a()

f()

Figure9.5 Nested Function Callsand Stack Size

If function g is called viafunction f, the stack area size is calculated according to the
formulalisted in table 9.2.

Table9.2 Stack Size Calculation Example

Call Route Sum of Stack Size (Bytes)
main (24) > f (32) > g (24) 80
main (24) - g (24) 48

As can be seen from table 9.2, the maximum size of stack arearequired for the longest
function calling route should be determined (80 bytesin this example) and at least this
size of memory should be allocated in RAM.

Note: If recursive calls are used in the C/C++ source program, first determine the stack area

required for arecursive call, and then multiply the size with the maximum level of
recursive calls.

(c) Heap Area

The total heap arearequired is equal to the sum of the areas to be allocated by memory
management library functions (calloc, malloc, realloc, or new) in the C/C++ program. Four

Rev. 1.0, 08/00, page 149 of 890
HITACHI

bytes must be added for one call because a 4-byte management areais used every time a
memory management library function allocates an area.

The compiler controls heap areain units of 1024 bytes. Areasize allocated for the heap
area (HEAPSIZE) is calculated by the following equation.

HEAPSIZE =1024 xn(n=1)

(Areasize allocated by the memory control library) + control area size < HEAPSIZE

An 1/O library function uses memory management library functions for internal processing.
The size of the areaallocated in an 1/0 is determined by the following formula: 516 bytes x
(maximum number of simultaneously open files)

Note: Areasreleased by the free or delete function, which is a memory management library
function, can bereused. However, since these areas are often fragmented (separated from
one another), arequest to allocate a new area may be rejected even if the net size of the
free areasis sufficient. To prevent this, take note of the following:

1. If possible, alocate the largest areafirst after program execution is started.
2. If possible, make the data area size to be reused constant.

» Rulesfor Allocating Dynamic Area

The dynamic areais allocated to RAM.

The stack areais determined by specifying the highest address of the stack to the vector
table, and refer to it as SP (stack pointer). Since the interrupt operation of the SH-3,
SH-3E, and SH-4 differ from that of the SH-1, SH-2, and SH-2E, interrupt handlers are
necessary.

The heap areais determined by the initial settings of the low-level interface routine
(sbrk).

For details on stack and heap aress, refer to section 9.2.2 (1), Vector Table Setting
(VEC_TBL), and section 9.2.2 (6), Creating Low-Level Interface Routine, respectively.

922 Execution Environment Settings

Here processing to prepare the environment for program execution is explained. However, the
environment for program execution will differ among user systems, and so a program to set the
execution environment must be created according to the specifications of the user system.

Figure 9.6 shows an exampl e of the structure of such a program.

Rev. 1.0, 08/00, page 150 of 890
HITACHI

YN
Power-on reset

~—

PowerON_Reset ' VEC_TBL
_ _INITSCT _CALL_INIT*1 __INITLIB User program | |__CALL_END*Y __CLOSEALL

: Table always reuired

Standard library:

: Routine always reuired

[

: Routine reuired when library
is used

[: Supplied by the C/C++ compiler Low-level
interface

Figure 9.6 Example of Program Structure
Note: Necessary when thereis aglobal class object declaration in the C++ program.
The components are explained below.

» Vector Table Setting (VEC_TBL)

Sets the vector table to initiate register initialization program (PowerON_Reset) and set the
stack pointer (SP) at power-on reset. Since the interrupt of the SH-3, SH-3E, and SH-4 differ
from the SH-1, SH-2, and SH-2E, interrupt handlers are necessary.

« Initialization (PowerON_Reset)
Initializes registers and sequentialy calls the initialization routines.

e Initidizing Sections (__INITSCT)
Clears non-initialized data area with zeros and copiesthe initialized data areain ROM to
RAM.

e [Initializing Library Functions (_ _INITLIB)

Initializes library functions required to be initialized; especialy, prepares standard 1/0
functions.

e Closing Files(_ _CLOSEALL)
Closes all files with open status.

Rev. 1.0, 08/00, page 151 of 890
HITACHI

Low-Level Interface Routines

Interfaces library functions and user system when standard 1/0 and memory management
library functions are used.

Global Class Object Initial Processing (__CALL_INIT)

Calls aconstructor of a class object that is declared as global.

Global Class Object Post-Processing (__CALL_END)

Calls adestructor of aglobal class object after the main function is executed.

Implementation of the above routines is described below.

(1) Vector Table Setting (VEC _TBL)

To call register initiaization routine PowerON_Reset at power-on reset, specify the start
address of function PowerON_Reset at address 0 in the vector table. Also to specify the SP,
specify the highest address of the stack to address H'4. Since the interrupt operation of the
SH-3, SH-3E, and SH-4 differ from those of the SH-1, SH-2, and SH-2E, interrupt handlers are
necessary. When the user system implements interrupt handling, interrupt vector settings are
also performed in this component. The coding example of VEC_TBL is shown below.

Example 1l Vector Tablefor SH-1, SH-2, SH-2E:

#pragma interrupt (I RQ)

extern voi d Power ON _Reset _PC(voi d);
extern void Power ON_Reset SP(void);
extern void Manual _Reset PC(void);
extern voi d Manual _Reset_SP(voi d);

extern void | RQ(void);

#pragma section VECTTBL /* Qutputs the RESET_Vectors to the CVECTTBL section */
/* by #pragma section declaration */
/* Allocates the CVECTTBL section to address 0x0 */
/* by the start option at |inkage */
void (*const RESET Vectors[])(void)={

#pragma section VECT2

(voi d*) Power ON_Reset _PC,
(voi d*) Power ON_Reset _SP,
(voi d*) Manual _Reset _PC,
(voi d*) Manual _Reset _SP

/* Qutputs the vec_table2 to the CVECT2 section */
/* by #pragnma section declaration*/

/* Allocates the CVECT2 section to the specified*/
/* address by the start address at |inkage */

void (*const vec_table2[])(void)={1RQ};

Rev. 1.0, 08/00, page 152 of 890

HITACHI

Example 2 Interrupt Handler when Bank 0is Used in the Program (SH7708)

; env.inc ;
EXPEVT:

.EQU H FFFFFFD4
| NTEVT:

.EQU H FFFFFFD8
; vect.inc ;
SR Init:

. EQU B' 00000000000000000000000011110000

; <<VECTOR DATA START (POWER ON RESET) >>
; H 000 Power On Reset
. GLOBAL Power ON_Reset
; <<VECTOR DATA END (PONER ON RESET) >>
; <<VECTOR DATA START (MANUAL RESET) >>
; H 020 Manual Reset
. GLOBAL Manual _Reset
; <<VECTOR DATA END (MANUAL RESET)>>
;H 040 TLB miss/invalid (Ioad)
. GLOBAL | NT_TLBM ss_Load
; H 060 TLB miss/invalid (store)
. GLOBAL | NT_TLBM ss_Store
;HO080 Initial page wite
.GLOBAL | NT_TLBI ni ti al _Page
; HOAO TLB protect (I|oad)
. GLOBAL | NT_TLBPr ot ect _Load
;HO0CO TLB protect (store)
. GLOBAL | NT_TLBProtect _Store
; H OEO Address error (Il oad)
. GLOBAL | NT_Address_| oad
; H 100 Address error (store)
. GLOBAL | NT_Addr ess_store
; H 120 Reserved
. GLOBAL | NT_Reservedl
; H 140 Reserved
. GLOBAL | NT_Reserved?2
; H 160 TRAPA
. GLOBAL | NT_TRAPA
;H 180 111 egal code
.GLOBAL I NT_I | | egal _code
;H 1A0 11l egal slot
.GLOBAL I NT_I I I egal _sl ot
;H1C0 NM
. GLOBAL | NT_NM
; H 1EO User breakpoint trap
. GLOBAL | NT_User _Break
; H 200 External hardware interrupt
. GLOBAL | NT_Ext er n_0000

Rev. 1.0, 08/00, page 153 of 890
HITACHI

; H 220 External hardware interrupt
. GLOBAL | NT_Ext ern_0001
; H 240 External hardware interrupt

. GLOBAL _INT_Ext ern_0010

; H 260 External hardware interrupt
. GLOBAL _INT_Extern_0011

; H 280 External hardware interrupt
. GLOBAL _INT_Ext ern_0100

; H 2A0 Ext ernal hardware interrupt
. GLOBAL _INT_Extern_0101

; H 2C0 External hardware interrupt
. GLOBAL _INT_Extern_0110

; H 2E0 External hardware interrupt
. GLOBAL _INT_Extern_0111

; H 300 External hardware interrupt
. GLOBAL _INT_Ext ern_1000

; H 320 External hardware interrupt
. GLOBAL _INT_Extern_1001

; H 340 External hardware interrupt
. GLOBAL _INT_Extern_1010

; H 360 External hardware interrupt
. GLOBAL _INT_Extern_1011

; H 380 External hardware interrupt
. GLOBAL _INT_Extern_1100

; H 3A0 External hardware interrupt
. GLOBAL _INT_Extern_1101

; H 3C0 External hardware interrupt
. GLOBAL _INT_Extern_1110

; H 3E0 External hardware interrupt
. GLOBAL _INT_Extern_1111

; H 400 TMUO TUNI O

. GLOBAL _INT_Ti mer _Under _0

;H 420 TMU1L TUNI 1

. GLOBAL _INT_Ti mer _Under _1

; H 440 TMJ2 TUNI 2

. GLOBAL _INT_Ti nmer _Under _2

; H 460 TMJ2 TI CPI 2

. GLOBAL _INT_I nput _Capture

; H 480 RTC ATI

. GLOBAL _INT_RTC_ATI

;H4A0 RTC PRI

. GLOBAL _INT_RTC_PRI

;H 4C0 RTC CU

. GLOBAL _INT_RTC CuUI

; H4EO0 SCI ERI

. GLOBAL _INT_SCI _ERlI

; H 500 SCI RXI

. GLOBAL _INT_SC_RX

; H 520 SC TX

. GLOBAL _INT_SCI _TXI

; H 540 SCI TEI

. GLOBAL _INT_SCI _TEI

; H 560 WDOT | TI

. GLOBAL _INT_WDT

; H 580 REF RCM

. GLOBAL _I NT_REF_RCM

Rev. 1.0, 08/00, page 154 of 890
HITACHI

; H 5A0 REF ROVI

. GLOBAL

_I NT_REF_ROVI

vhandl er. src

. | NCLUDE "env.inc"

. | NCLUDE "vect.inc"
| MASKcl r:

. EQU H FFFFFFOF
RBBLcl r:

. EQU H CFFFFFFF
MDRBBLset :

. EQU H 70000000

. | MPORT RESET_Vect or s
. I MPORT | NT_Vectors
. | MPORT | NT_MASK

macro definition

. MACRO PUSH _EXP_BASE_REG

STC. L
STC.
STS
STC
STC.
STC
STC
STC.
STC
STC
STC.
. ENDM

| i e e s i e S S

. MACRO POP_EXP_BASE_REG

LDC.
LDC.
LDC.
LDC.
LDC.
LDC.
LDC.
LDC.
LDS.
LDC.
LDC.
. ENDM

| i e e s e i e o S

SSR, @ R15

SPC, @ R15

PR, @ R15
R7_BANK, @ RL5
R6_BANK, @ RL5
R5_BANK, @ R15
R4_BANK, @ RL5
R3_BANK, @ R15
R2_BANK, @ RL5
RL_BANK, @ RL5
RO_BANK, @ R15

@R15+, RO_BANK
@R15+, RL_BANK
@15+, R2_BANK
@R15+, R3_BANK
@R15+, R4_BANK
@R15+, R5_BANK
@R15+, R6_BANK
@R15+, R7_BANK
@R15+, PR
@r15+, SPC
@R15+, SSR

save SSR
save SPC

save CONTEXT REG STERS

RECOVER REQ STERS

HITACHI

Rev. 1.0, 08/00, page 155 of 890

) reset)

. SECTI ON RSTHandl er , CODE
_Reset Handl er:

MOV. L #EXPEVT, RO

MOV.L @R0O, RO

SHLR2 RO
SHLR RO
MOV. L #_RESET_Vectors,rl
ADD R1, RO
MOV.L @R0O, RO
JMP @0
NOP
; exceptional interrupt ;

. SECTI ON | NTHandl er , CODE
. EXPORT | NTHandl er PRG

| NTHandl er PRG

_ExpHandl er:

PUSH_EXP_BASE REG
MOV. L #EXPEVT, RO ; set event address
MOV.L @RO, R1 ; set exception code
MOV.L # I NT_Vectors, RO ; set vector table address
ADD #-(H 40), Rl ; exception code - H 40
SHLR2 R1
SHLR R1
MV.L @RO,Rl),R3 ; set interrupt function addr
MOV. L #_ | NT_MASK, RO ; interrupt nask table addr
SHLR2 R1
MOV.B @RO,Rl), Rl ; interrupt nmask
EXTU. B R1, R1
STC SR, RO ; save SR
MOV. L #(RBBLcl r& MASKclr), R2
; RB, BL, mask cl ear data
AND R2, RO ; clear nmask data
OR R1, RO ; set interrupt mask
LDC RO, SSR ; set current status
LDC.L R3, SPC
MOV.L # int_termRO ; set interrupt terminate
LDS RO, PR
RTE
NOP
. POOL

Rev. 1.0, 08/00, page 156 of 890
HITACHI

; Interrupt terminate ;
.ALICN 4
_int_term

MOV.L #MDRBBLset, RO ; set MD, BL,RB
LDC.L RO, SR

POP_EXP_BASE_REG

RTE ;oreturn
NOP

. POOL

; TLB miss interrupt

. ORG H 300
_TLBm ssHandl er:
PUSH_EXP_BASE_REG

MOV. L #EXPEVT, RO ; set event address
MOV.L @0, Rl ; set exception code
MOV.L # INT_Vectors, RO ; set vector table address
ADD #-(H 40), Rl ; exception code - H 40
SHLR2 R1
SHLR R1
MV.L @RO,Rl),R3 ; set interrupt function addr
MOV. L # | NT_MASK, RO ; interrupt nmask table addr
SHLR2 R1
MWV.B @R0,Rl), Rl ; interrupt mask
EXTU. B R1, R1
STC SR, RO ; save SR
MOV.L #(RBBLcl r& MASKclr), R2
; RB, BL, mask cl ear data
AND R2, RO ; clear nask data
oR R1, RO ; set interrupt nmask
LDC RO, SSR ; set current status
LDC.L R3, SPC
MOV.L # int_termRO ; set interrupt terminate
LDS RO, PR
RTE
NOP
. POOL

Rev. 1.0, 08/00, page 157 of 890
HITACHI

. ORG H 500

_I RQHandl er:
PUSH EXP_BASE REG
MOV. L #| NTEVT, RO ; set event address
MOV.L @R0,RL ; set exception code
MOV.L # I NT_Vectors, RO ; set vector table address
ADD #-(H 40), R1 ; exception code - H 40
SHLR2 R1
SHLR R1
MOV.L @RO,Rl), R3 ; set interrupt function addr
MOV. L #_ | NT_MASK, RO ; interrupt nask table addr
SHLR2 R1
MWV.B @RO0,Rl), Rl ; interrupt mask

EXTU.B R1, Rl

STC SR, RO ; save SR
MOV.L #(RBBLcl r& MASKclr), R2

; RB, BL, mask clear data
AND R2, RO ; clear mask data
OoR R1, RO ; set interrupt mask
LDC RO, SSR ; set current status

LDC.L R3,SPC
MOV.L # int_termRO ; set interrupt termnate
LDS RO, PR

RTE
NOP

. POOL
. END

Note: Do not link the function by which #pragma interrupt has been specified.

(2) Initialization (PowerON_Reset)
When library functions are used, sequentially callstheinitialization routine __INITLIB and
fileclosing routine_ CLOSEALL. The coding example of PowerON_Reset is shown below.
Since the interrupt operation of the SH-3, SH-3E, and SH-4 differ from those of the SH-1,
SH-2, and SH-2E, interrupt handlers are necessary.

Example:
SR Init: . EQU B' 00000000000000000000000011110000
I NT_OFFSET .EQU H 10

Rev. 1.0, 08/00, page 158 of 890
HITACHI

. | MPORT
. | MPORT

. | MPORT
. | MPORT

. | MPORT

. | MPORT
. | MPORT

. | MPORT

. EXPORT
. EXPORT

. SECTI ON

_Power ON_Reset _PC:
_Manual _Reset _PC:
MOV. L

LDC

MOV.

JSR

_ _INITSCT
_INT_Vectors

_ INT_IQIB
_ _CLOSEALL

_ _INIT_OTHERLI B

_ _CALLINT
_ _CALL_END

_Power ON_Reset _PC
_Manual _Reset _PC

Reset PRG, CODE
#_| NT_Vect or s- | NT_OFFSET, RO
RO, VBR

#_ _INITSCT, R1

@l

_INIT_IOLIBRL
@l

_INIT_OTHERLI B, R
@l

CALLINT, RL
@l

#SR Init, RO
main, R8

HITACHI

VBR setting

call _ _INITSCT

call _ INIT_IOLIB
call _ _INIT_OTHERLI B
call _ _CALL_INT

SR setting

Rev. 1.0, 08/00, page 159 of 890

MOV. L # _CALL_END, R1

JSR @l

MOV. L # _CLOSEALL, Rl

SLEEP
NOoP

. POOL
. END

(3) Section Initialization (_ _INITSCT)

; call main function

; call _ _CALL_END

; call _ _CLOSEALL

To set the C/C++ program execution environment, clear the non-initialized data area with
zeros and copy theinitialized dataareain ROM to RAM. To executethe __INITSCT
function, the following addresses must be known.

0 Start address (1) of initialized data areain ROM
O Start address (2) and end address (3) of initialized dataareain RAM
0 Start address (4) and end address (5) of non-initialized data area

Address 0

(1) —=

@) —

() —
4 —

() —

Interrupt vector

Program area
(P

Constant area

©

Initialized data area

(®)

ROM

Initialized data area

(R)

Non-initialized
data area (B)

Dynamic area

RAM

Rev. 1.0, 08/00, page 160 of 890

HITACHI

To obtain the above addresses, create the following assembly program and link it together.

. SECTI ON D, DATA, ALl G\=4
. SECTI ON R, DATA, ALI G\=4
. SECTI ON B, DATA, ALl G\=4
. SECTI ON C, DATA, ALI G\=4

_ D ROM .DATA. L
start address of
_D BGN .DATA L
start address of
_DEND .DATA L

(STARTOF D)
section D
(STARTOF R)
section R

(STARTOF R) + (Sl ZEOF R)

end address of section R

_B BGN .DATA L
start address of
_B END .DATA L

(STARTOF B)
section B

(STARTOF B) + (Sl ZEOF B)

end address of section B

. EXPORT _
. EXPORT _
. EXPORT _
. EXPORT _
. EXPORT _

. END

D _ROM
D BGN
D END
_B BGN
B END

(1)

(2)

(3)

(4)

(5)

Notes: 1. Section names B and D must be the section names for non-initialized data area and
initialized data area, which are specified with the section option or #pragma section,
respectively. B and D indicate the default section names.

2. Section name R must be the section name in RAM area specified with the rom option

at linkage. R indicates the default section name.

If the above preparation is completed, section initialization routine can be written in C/C++ as

shown below.

HITACHI

Rev. 1.0, 08/00, page 161 of 890

Example:

(a) Section initialization routine

extern int *_DROM *_B BG\, *_B END, *_D BGN, *_D END;
#i fdef _ _cplusplus

extern "C'
#endi f
void _INITSCT()
{
int *p, *q;

/* Non-initialized data area is initialized to zeros */

for (p = _BBG\; p < _BEND; pt++)
*p o;

/* Initialized data is copied fromROMto RAM */

_DBGN, g=_DROM; p < _DEND; pt++, q++)

Note: The declaration of p and g must be a char* type when the section sizeis not a multiple of
four bytes.

(b) Global object initial processing/post-processing routine
_CALL_INIT and _CALL_END routines are provided in the library. When using these
routines, _h c_lib.h must be included.

(4) C/C++ library function initial settings (_INITLIB)
Here, the method for setting initial values for C/C++ library functionsis explained.

In order to set only those values which are necessary for the functions that are actualy to be
used, please refer to the following guidelines.

O When using the <stdio.h>, <ios>, <streambuf>, <istream>, or <ostream> functions or the
assert macro, the standard /O initial setting (_INIT_IOLIB) is necessary.

O When aninitial setting is required in the prepared low-level interface routines, the initial
setting (_INIT_LOWLEVEL) in accordance with the specifications of the low-level
interface routines is necessary.

0 When using the rand function or the strtok function, initial settings other than those for
standard I/O (_INIT_OTHERLIB) are necessary.

Rev. 1.0, 08/00, page 162 of 890
HITACHI

An example of a program to perform initial library settings is shown below. FILE-type datais
shown in figure 9.7.

Rev. 1.0, 08/00, page 163 of 890
HITACHI

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#define | OSTREAM 3

struct _iobuf _iob[| OSTREAM;
unsi gned char sm _buf[| CSTREAM ;
extern char *_siptr;

#i fdef _ _cplusplus
extern "C' {

#endi f

void _INITLIB (void)

_INIT_LOALEVEL(); [// Set initial setting for lowlevel interface routines
_INIT_I QLI B(); /1 Set initial setting for I/Olibrary
_INIT_OTHERLIB(); // Set initial setting for rand function, strtok function

}
void _INIT_LOMEVEL (void)
/] Set necessary initial setting for lowlevel library
}
void _INIT_ICOLIB(void)
FILE *fp;
for(fp = _iob; fp < _iob + _nfiles; fp++) /1 Set initial setting for FILE
I/ type data
{
fp->_bufptr = NULL
fp->_bufcnt =0
fp->_buflen = 0
f p->_buf base = NULL
fp->_ioflagl = 0
fp->_ioflag2 = 0
fp->_iofd = 0;

}
if(freopen("stdin™, "r", stdin)== NULL) /1 Open standard input file

stdin->_ioflagl = Oxff; /1 Forbid file access if open fails
stdin->_ioflagl | = _I QUNBUF; /1 Disable data buffering™
i f(freopen("stdout™, "w', stdout)== NULL) // Open standard output file
stdout-> ioflagl = Oxff; // Forbid file access if open fails
stdout->_ioflagl | = _I OUNBUF; /1 Disable data buffering™
i f(freopen("stderr™, "w', stderr)== NULL) // QOpen standard error file
stderr->_ioflagl = Oxff; /1 Forbid file access if open fails
stderr->_ioflagl | = _I OQUNBUF; /1 Disable data buffering™
}
void _INIT_OTHERLI B(voi d)
srand(1); /1 Set initial setting if using rand function
_slptr=NULL; /1 Set initial setting if using strtok function

}
#ifdef _ _cplusplus

}
#endi f

Rev. 1.0, 08/00, page 164 of 890
HITACHI

Notes: 1. Specify the filename for the standard /O file. This nameis used in the low-level
interface routine "open”.
2. Inthe case of aconsole or other interactive device, aflagis set to prevent the use of
buffering.

[* File-type data declaration in C language */

struct _iobuf{

unsi gned char *_bufptr; [* Pointer to buffer */

| ong _bufent; [* Buffer counter */

unsi nged char *_buf base; /* Base pointer to buffer */
| ong _bufl en; [* Buffer length */

char _ioflagl; [* 11O flag */

char _ioflag2; [* 11O flag */

char _iofd; [* 11O flag */

Yiob[_nfiles];

Figure 9.7 FILE-Type Data

(5) Closing files (_CLOSEALL)
Normally, output to filesis held in a buffer areain memory, and when the buffer becomes full
datais actually written to the external recording device. Henceif afileis not closed properly, it
is possible that data output to a file may not actually be written to the external recording
device.
In the case of a program intended for embedding in equipment, normally the program is not
terminated. However, if the main function is terminated due to a program error or for some
other reason, any open filesmust all be closed.
This processing closes any files that are open at the time of termination of the main function.

An example of aprogram to close any open filesis shown below.

Rev. 1.0, 08/00, page 165 of 890

HITACHI

#i ncl ude <stdi o. h>

#i fdef __cpl uspl us

extern "C'
#endi f
voi d _CLOSEALL(voi d)
{
int i;
for(i=0; i < _nfiles; i++)
/1 Check to see whether the file is open or not
if(_iob[i]._ioflagl & (_IOREAD | _IONRITE | _IORW))
fclose(& iob[i]); // dose the file

(6) Low-level interface routines

When using standard 1/0 or memory management library functionsin a C/C++ program, low-
level interface routines must be prepared. Table 9.3 lists the low-level interface routines used
by C library functions.

Table 9.3 List of Low-Level Interface Routines

Name Description

open Opens file

close Closes file

read Reads from file

write Writes to file

Iseek Sets the read/write position in a file
sbrk Allocates area in memory

Initialization necessary for low-level interface routines must be performed on program startup.
Thisinitialization should be performed using the INIT_LOWLEVEL function described in
section 9.2.2 (4), C/C++ library function initial settings (_INITLIB).

Below, after explaining the basic approach to low-level 1/0, the specifications for each
interface routine are described.

Note: The function names open, close, read, write, Iseek, and sbrk are reserved for low-level
interface routines. They should not be used in user programs.

Rev. 1.0, 08/00, page 166 of 890
HITACHI

(@) Approachto 1/0

In the standard 1/0 library, files are managed by means of FILE-type data; but in low-level
interface routines, positive integers are assigned in a one-to-one correspondence with actual
files for management. These integers are called file numbers.

In the open routine, afile number is provided for a specified filename. The open routine
must be set the following information such that this number can be used for file input and
output.

« Thedevice type of the file (console, printer, disk file, etc.) (In the cases of special
devices such as consoles or printers, special filenames must be set by the system and
identified in the open routine)

« When using file buffering, information such as the buffer position and size

« Inthecase of adisk file, the byte offset from the start of the file to the position for
reading or writing

Based on the information set using the open routine, all subsequent 1/0 (read, write

routines) and read/write positioning (Iseek routine) is performed.

When output buffering is being used, the close routine should be executed to write the

contents of the buffer to the actual file, so that the data area set by the open routine can be

reused.
(b) Specifications of low-level interface routines

In this section, specifications for low-level interface routines are described. For each
routine, the interface for calling the routine, its operation, and information for using the
routine are described.

The interface for the routinesis indicated using the following format. Low-level interface
routines should always be given a prototype declaration. Add "extern C" to declarein the
C++ program.

(Routine name)

Description (A summary of the routine operationsis given)
Return value Normal: (The meaning of the return value on normal termination is
explained)

Error: (The return value when an error occurs is given)

Parameters (Name) (Meaning)
(The name of the parameter (The meaning of the value
appearing in the interface) passed as a parameter)

Rev. 1.0, 08/00, page 167 of 890
HITACHI

int open(char *name, int mode, int flg)

Description

Prepares for operations on the file corresponding to the filename of the first
parameter. In the open routine, the file type (console, printer, disk file, etc.)
must be determined in order to enable writing or reading at alater time. The
file type must be referenced using the file number returned by the open
routine each time reading or writing isto be performed.

The second parameter, mode, specifies processing to be performed when the
file is opened. The meanings of each of the bits of this parameter are as
follows.

15 5 4 3 2 1 0

moe[Ny [L Ll Ty

— 0 _RDONLY
O_WRONLY
O_RDWR
O_CREAT
O_TRUNC
O_APPEND

Table 9.4 Explanation of Bitsin Parameter " mode" of the File Open Routine

Bit

Description

O_RDONLY (bit 0)

When this bit is 1, the file is opened in read-only mode

O_WRONLY (bit 1)

When this bit is 1, the file is opened in write-only mode

O_RDWR (bit 2)

When this bit is 1, the file is opened for both reading and
writing

O_CREAT (bit 3)

When this bit is 1, if a file with the filename given does not
exist, it is created

O_TRUNC (bit 4)

When this bit is 1, if a file with the filename given exists the file
contents are deleted, and the file size is setto 0

O_APPEND (bit 5)

Sets the position within the file for the next read/write
operation

When 0: Set to read/write from the beginning of file
When 1: Set to read/write from file end

When there is a contradiction between the file processing specified by mode
and the properties of the actual file, error processing should be performed.
When thefile is opened normally, the file number (a positive integer) should
be returned which should be used in subsequent read, write, 1seek, and close
routines. The correspondence between file numbers and the actual files must
be managed by low-level interface routines. When afile open operation fails,
-1 should be returned.

Rev. 1.0, 08/00, page 168 of 890

HITACHI

Return value

Parameters

int close(int fileno)

Description

Return value

Parameter

Normal: The file number for the successfully opened file

Error: -1

name: The filename for thefile

mode; Specifies the type of processing when the file is opened
flg: Specifies processing when thefile is opened (always 0777)

The file number obtained using the open routine is passed as an parameter.
The file management information area set using the open routine should be
released to enable reuse. Also, when output file buffering is performed in
low-level interface routines, the buffer contents should be written to the
actual file.

When thefileis closed successfully, O isreturned; if the close operation fails,
-lisreturned.

Normal: 0
Error: -1
fileno: File number for thefile to close

int read(int fileno, char *buf, unsigned int count)

Description

Return value

Dataisread from thefile specified by the first parameter (fileno) to the area
in memory specified by the second parameter (buf). The number of bytes of
datato beread is specified by the third parameter (count).

When the end of thefile is reached, only a number of bytes fewer than or
equal to count bytes can be read.

The position for file reading/writing advances by the number of bytes read.

When reading is performed successfully, the actual number of bytesread is
returned; if the read operation fails, -1 is returned.

Normal: Actua number of bytes read
Error: -1

Rev. 1.0, 08/00, page 169 of 890
HITACHI

Parameters

fileno File number of thefile to be read
buf Memory areato store read data
count Number of bytesto read

int write(int fileno, char *buf, unsigned int count)

Description

Return value:

Parameters:

Writes data to the file indicated by the first parameter (fileno) from the
memory areaindicated by the second parameter (buf). The number of bytes
to be written isindicated by the third parameter (count).

If the device (disk etc.) of thefileto bewritten isfull, only a number of bytes
fewer than or equal to count bytes can be written. It is recommended that, if
the number of bytes actually written is zero a certain number of timesin
succession, the disk should be judged to be full and an error (-1) should be
returned.

The position for file reading/writing advances by the number of bytes
written. If writing is successful, the actual number of bytes written should be
returned; if the write operation fails, -1 should be returned.

Normal: Actual number of bytes written

Error: -1

fileno File number to which dataiis to be written
buf Memory area containing data for writing
count Number of bytesto write

int 1seek(int fileno, long offset, int base)

Description:

Sets the position within the file, in byte units, for reading from and writing to
the file. The position within a new file should be calculated and set using the
following methods, depending on the third parameter (base).

(1) When base is0: Set the position at offset bytes from the file beginning
(2) When baseis 1: Set the position at the current position plus offset bytes
(3) When baseis 2: Set the position at the file size plus offset bytes

When thefileis a console, printer, or other interactive device, and when the
new offset is negative, or whenin cases (1) and (2) thefile size is exceeded,
an error occurs. When the file position is set correctly, the new position for

Rev. 1.0, 08/00, page 170 of 890

HITACHI

Return value:

Parameters:

char *sbrk(int size)

Description:

Return value:

Parameter:

reading/writing should be returned as an offset from the file beginning; when
the operation is not successful, -1 should be returned.

Normal: The new position for file reading/writing, as an offset in bytes
from the file beginning

Error: -1

fileno File number

offset The position for reading/writing, as an offset (in bytes)

base The starting-point of the offset

The size of the memory areato be allocated is passed as a parameter.

When calling the sbrk routine several times, memory areas should be
allocated in succession starting from lower addresses. If memory areafor
allocation isinsufficient, an error should occur. When allocation is
successful, the address of the beginning of the allocated memory area should
be returned; if unsuccessful, (char *) -1 should be returned.

Normal: Starting address of allocated memory
Error: (char *) -1
size Size of areato be allocated

Rev. 1.0, 08/00, page 171 of 890
HITACHI

(c) Example of Coding the Low-Level Interface Routine

/***/

/= | owsrc. c: */
/* ___ */
/= Super H RI SC engi ne Series Simulator/Debugger |Interface Routine */
/* Only standard |/ O (stdin,stdout,stderr) are supported */

AR E R R R R R R R EREEEEEEEEEE R R R R R R R LY

#i ncl ude <string. h>

/* File Nunmber */

#define STDIN O /* Standard input (Console) */

#defi ne STDOUT 1 /* Standard out put (Console) */

#def i ne STDERR 2 /* Standard error output (Console) */
#define FLM N O /* Mnimumfile nunber */

#define FLMAX 3 /* Maxi mum nunber of files */

/* File flags */
#define O RDONLY 0x0001 /* Read only */
#define O VW\RONLY 0x0002 /* Wite only */

#def i ne O_RDWR 0x0004 /* Read/Wite */

/* Special character code */

#defi ne CR 0x0d /* Carriage return */
#defi ne LF Ox0a /* Line feed */

/* Area size managed by sbrk */
#defi ne HEAPSI ZE 1024

/**/

/= Ref erence function decl aration */
/* Assenbly programreference which inputs/outputs characters to */
/* consol e using sinul at or/ debugger */

/**/

extern void charput(char); /* One character input processing */
extern char charget(void); /* One character output processing */

/**/

/* Static variable definition */
/* Definition of static variables used in lowlevel interface routine */

AR R R AR EEEY]

char flmd[FLMAX]; /* Mbde setting |ocation of open file */

static union {

long dummy;/* Dummy for four-byte alignment */

char heap[HEAPSI ZE] ; /* Declaration of area nanaged by sbrk */
} heap_areas;

static char *brk=(char*)&heap_area; /* End address allocated by sbrk */

Rev. 1.0, 08/00, page 172 of 890

HITACHI

/**/

/= open: Open file */
/* Return value: File Nunber (Success) */
/= -1 (Failure) */

/**/

int open(char *name, /* File name */
int nrode) /* File node */

/* Check node according to the file nane, and return the file nunber */

if (strcnp(nane,"stdin")==0) { /* Standard input file */
if ((mde&0 RDONLY)==0) {
return (-1);

}
f1 mod[STDI N] =node;
return (STDIN);

}

else if (strcnp(nane, "stdout")==0) { /* Standard output file */
if ((mde&0 WRONLY) ==0) {
return (-1);

}
f | nod[STDOUT] =node;
return (STDOUT);

}
else if (strcnp(nane, "stderr")==0){ /* Standard error output file */
if ((mde&0 VRONLY) ==0) {
return (-1);
}
f 1 mod[STDERR] =node;
return (STDERR);
}
el se {
return (-1); /* Error */
}
}
/**/
/* close: Cose file */
/= Ret urn val ue 0 (Success) */
/* -1 (Failure) */

AR R R AR E RS EEE R EEEEEEY]

int close(int fileno) /* File nunber */

{
if (fileno<FLM N || FLMAX<fileno) { /* Check file nunber range */
return -1,
}
flmod[fileno]=0; /* Reset file node */
return O;
}

Rev. 1.0, 08/00, page 173 of 890
HITACHI

/**/

/= read: Read data */
/* Return value: Read character count (Success) */
/= -1 (Failure) */

/**/

int read(int fileno, /* File nunber */

char *buf, /* Transfer destination buffer address */
unsigned int count) /* Read character count */
{
unsigned int i;
/* Check node according to file nane, input one character each, */
/* and store the characters to buffer */
if (flmod[fileno]l & RDONLY || flnod[fileno] & RDWR) {
for (i=count;i>0;i--) {
*puf =charget () ;
if (*buf==CR) { /* Replace line feed character */
*buf =LF;
}
buf ++;
}
return count;
}
el se {
return -1;
}
}
/************************************~k~k~k~k~k~k~k~k~k~k~k~k~k***********************/
/= wite: Wite data */
/* Return value: Witten data count (Success) */
/= -1 (Failure) */

/**/

int wite(int fileno, /* File nunber */
char *buf, /* Transfer source buffer address */
unsigned int count) /* Witten character count */

unsigned int i;
char c;

/* Check node according to file name and output one character at a time */
if (flmod[fileno]l & WRONLY || flnod[fil eno] & RDWR) {
for (i=count; i>0; i--) {
c=*buf ++;
charput (c);

return count;

}
el se {

return -1;
}

Rev. 1.0, 08/00, page 174 of 890

HITACHI

/***/

/= | seek: Set file read/wite position */
/*Return value: Gfset fromthe beginning of file to be read/witten (Success) */
/= -1 (Failure) */
/* (Consol e I/ 0O does not support |seek) */
/***/
long | seek(int fileno, /* File nunber */
| ong of fset, /* Read/wite start position*/
int base) /* Start of offset */
{
return -1;
}
/**/
/* sbrk: Data wite */
/= Return value: Start address of allocated area */
/* -1 (Failure) */
/**/
char *sbrk(unsigned | ong size) /* Size of area to be allocated */
{
char *p;

/* Check enpty area */

if (brk+size>heap_area. heap+HEAPSI ZE) {
return (char *)-1;
}

p=brk; /* Alocate area */
br k+=si ze; /* Update end address */
return p;

LR T R I R T T I R R I T R T I R R I R A N T R R R N N N N R N R N R N N T R R A N

; low vl.src ;

LR R T R R O T T R T I T A N T I R R T A A N T R R R N R A N R N R N R N N T R B

; SuperH RI SC engi ne Series Sinulator/Debugger |Interface Routine ;
; I nput / Qut put one character ;

I R R R R R R N R R R R R R R B R R R R BN B R B R B R R R R B R B R R R AR B R NN AR BRI AR AR BN R N SRR

. EXPORT _char put
. EXPORT _char get
SIMIO
. EQU H 0000 ; Specify TRAP_ADDRESS

. SECTI ON P, CODE, ALIG\=4

Rev. 1.0, 08/00, page 175 of 890
HITACHI

; _charput: One character output ;
; C programi nterface: char put (char) ;

R R R R R R R B R R R R R B R R R R B R B N N R B R R R R B R R N R R AR B B NN AR BN R AR SR BN R N BRI

_charput:
MOV.L O _PAR RO ; Set buffer address
MOV.B R4, @RO ; Set paraneter to buffer
MOV. L #O PAR R1 ; Set parameter block address
MOV.L #H 01220000, RO ; Set function code (PUTC)
MOV. W #SIMIO R ; Set systemcall address
JSR @r2
NOP
RTS
NOP
.ALIGN 4

O _PAR ; Paranet er bl ock area

. DATA. L OUT_BUF

; _charget: One character input ;
; C programinterface: char charget(void) ;

R R R R R R N R B R R R R R B R R R R B B R N R B R R R R B R R N R R SR B R AR SR BN R AR SR B R N SRR

.ALICN 4
char get
MOV.L #l _PAR Rl ; Set paraneter block address
MOV.L #H 01210000, R0 ; Set function code (CGETC)
MOV. W #SIM IO R2 ; Set systemcall address
JSR ar
NOP
MOV.L | _PAR RO ; Set buffer address
MOV. B @RO, RO ; Set the input data as the return val ue
RTS
NOP
. ALI GN 4
| _PAR: ; Paraneter block area
. DATA. L I N_BUF

EE R R R R R R N R B R R R R R B R R R R B R B N B R B R R R R B R R R R R SR B R NN AR BN R AR AR B R B SRR

; Definition of 1/0 buffer

R R R R R R R R R R R R R R B R R R R R B R B R N R B R R R RN B R R R R R BN B R NN SR BN I AR AR B RN SRR

. SECTI ON B, DATA, ALl G\=4

OUT_BUF:

.RES.L 1 ; CQutput buffer
I N_BUF:

.RES.L 1 ; Input buffer

. END

Rev. 1.0, 08/00, page 176 of 890
HITACHI

(7) Ter
@

mination Processing Routine

Example of preparation of aroutine for termination processing registration and execution
(atexit)

The method for preparation of the library function atexit to register termination processing
is described.

The atexit function registers, in atable for termination processing, a function address
passed as a parameter. If the number of functions registered exceeds the limit (in this case,
the number that can be registered is assumed to be 32), or if an attempt is made to register
the same function twice, NULL isreturned. Otherwise, avalue other than NULL (in this
case, the address of the registered function) is returned.

Example:

#inclu
t ypede

int _a
atexit
#i f def
extern

#endi f
atexit
{

in

fo

if

e

(b)

de <stdlib. h>
f void *atexit _t

texit_count=0
t (*_atexit_buf[32])(void)

_ _cplusplus
"

_t atexit(atexit_t (*f)(void))
toi;

r(i=0; i<_atexit_count ; i++) /] Check whether it is already registered
if(_atexit_buf[i]==f)
return NULL
(_atexit_count==32) // Check the limt value of nunber of registration
return NULL
se {
atexit_buf[_atexit_count++] =f; /! Register function address
return f

Example of preparation of aroutine for program termination (exit)

The method for preparation of an exit library function for program termination is described.
Program termination processing will differ among user systems; refer to the program
example below when preparing a termination procedure according to the specifications of
the user system.

The exit function performs termination processing for a program according to the

termination code for the program passed as an parameter, and returns to the environment in
which the program was started. Here the termination code is set to an external variable, and
execution returned to the environment saved by the setjmp function immediately before the
main function was called. In order to return to the environment prior to program execution,

Rev. 1.0, 08/00, page 177 of 890
HITACHI

the following callmain function should be created, and instead of calling the function main
from the PowerON_Reset initial settings function, the function callmain should be called.

A program example is shown below.

#i ncl ude <setjnp. h>
#i ncl ude <stddef. h>

typedef void * atexit_t ;
extern int _atexit_count ;

extern atexit_t (*_atexit_buf[32])(void) ;
#ifdef _ _cplusplus

extern "C'

#endi f

void _CLOSEALL(voi d);

int main(void);

extern jnp_buf _init_env ;
int _exit_code ;

#ifdef _ _cplusplus

extern "C'
#endi f
void exit(int code)
{ . .
int i;
_exit_code=code ; /I Set the return code in _exit_code
for(i=_atexit_count-1; i>=0; i--)// Executein sequence the functions registered
(*_atexit_buf[i])(); /1 by the atexit function

_CLOSEALL(); /I Close al open functions

longjmp(_init_env, 1) ; /I Return to the environment saved by setjmp
}
#i fdef _ _cplusplus
extern "C'
#endi f
voi d cal | mai n(voi d)
{

//Save the current environment using setjmp, call the main function
if(!setjmp(_init_env))
_exit_code=nain(); /I On returning from the exit function,
// terminate processing

Rev. 1.0, 08/00, page 178 of 890
HITACHI

(© Example of creation of an abnormal termination (abort) routine

On abnormal termination, processing for abnormal termination must be executed in
accordance with the specifications of the user system.

In a C++ program, the abort function will also be called in the following cases:
« When exception processing was unable to operate correctly.

« When apure virtual function is called.

« When dynamic_cast hasfailed.

» When typeid has failed.

« When information could not be acquired when class array was deleted.

« When the definition of the destructor call for objects of agiven class causes a
contradiction.

Below is shown an example of a program which outputs a message to the standard output
device, then closes all files and begins an endless |oop to wait for reset.

#i ncl ude <stdi o. h>

#i fdef _ _cplusplus
extern "C

#endi f
void _CLOSEALL(voi d);

#i fdef _ _cplusplus
extern "C'

#endi f
voi d abort (voi d)

printf("programis abort !!\n"); //Output message
_CLOSEALL(); /1 Closedl files
whi | e(1) ; /1 Begin endless loop

9.3 Linking C/C++ Programs and Assembly Programs

Here the following matters to be born in mind when linking C/C++ programs and assembly
programs are discussed.

» Method for mutual referencing of external names
e Interface for function calls

Rev. 1.0, 08/00, page 179 of 890
HITACHI

931 Method for Mutual Referencing of External Names

External names which have been declared in a C/C++ program can be referenced and updated in
both directions between the C/C++ program and an assembly program. The compiler treats the
following items as external names.

Global variables which are not declared as static storage classes (C/C++ programs)
Variable names declared as extern storage classes (C/C++ programs)

Function names not declared as static memory classes (C programs)

Non-member, non-inline function names not specified as static memory classes (C++
programs)

Non-inline member function names (C++ programs)

Static data member names (C++ programs)

(1) Method for referencing assembly program external namesin C/C++ programs

In assembly programs, the .EXPORT directive is used to declare external symbol names
(preceded by an underscore ()).

In C/C++ programs, symbol names (not preceded by an underscore) are declared using the
extern keyword.

Assembly program (definition) C/C++ program (reference)

.EXPORT _a, b extern int a,b;

. SECTI ON D, DATA, ALI G\=4
a: .DATA L 1

_b: .DATA L 1 void f()
. END {
a+=b;
}

(2) Method for referencing C/C++ program external names (variables and C functions) from

assembly programs
A C/C++ program can define external variable names (without an underscore ().

In an assembly program, the .IMPORT directive is used to declare an external name (preceded
by an underscore).

Rev. 1.0, 08/00, page 180 of 890

HITACHI

C/C++ program (definition)

Assembly program (reference)

int a;

IMPORT _a
. SECTI ON P, CODE, ALI G\=2
MOV. L A a, Rl
MOV. L @1, RO
ADD #1, RO
RTS
MOV. L RO, @1
CALIGN 4
A a: .DATAL _a
. END

(3) Method for referencing C++ program external names (functions) from assembly programs
By declaring functions to be referenced from an assembly program using the extern "C"
keyword, the function can be referenced using the same rules asin (2) above. However,
functions declared using extern "C" cannot be overloaded.

C++ program (callee)

extern "C'
voi d sub()
{
}

Rev. 1.0, 08/00, page 181 of 890
HITACHI

Assembly program (caller)

. I MPORT _sub
. SECTI ON P, CODE, ALI G\=4

STS.L PR @RI5
MV.L RL, @1, R15)

MoV R3, R12
MOV. L A sub, RO
JSR @ro

NOP

LDS. L @Rr15+, PR

A sub: . DATA L _sub
. END

9.3.2 Function Calling Interface

When either a C/C++ program or an assembly program calls the other, the assembly programs
must be written using rulesinvolving the following:

Stack pointer

Allocating and deallocating stack frames

Registers

Setting and referencing parameters and return values

A w NP

(1) Stack Pointer
Valid data must not be stored in a stack area with an address lower than the stack pointer (in
the direction of address H'0), since the data may be destroyed by an interrupt process.

(2) Allocating and Deallocating Stack Frames
In afunction cal (right after the JSR or the BSR instruction has been executed), the stack
pointer indicates the lowest address of the stack used by the calling function. Allocating and
setting data at addresses greater than this address must be done by the caller.
After the caller deallocates the area it has set with data, control returns to the caller usually
with the RTS instruction. The caller then deallocates the area having a higher address (the
return value address and the parameter area).

Rev. 1.0, 08/00, page 182 of 890
HITACHI

After function call and after
control returns from a function

* Lower address

: Area allocated by the callee

Sp— (during function call)

Return value address Area deallocated by the callee
(after control returns from a function

|:| : Area deallocated by the caller

Parameter area

+ Higher address

Figure 9.8 Allocation and Deallocation of a Stack Frame

(3) Registers
Some registers may change during a function call, while some may not. Table 9.5 showsthe
rulesto save and restore in registers.

Table9.5 Rulesto Saveand Restorein Registers

Item Registers Used in a Function Notes on Programming

Caller-save registers RO to R7, FRO to FR11**, If registers used in a function contain
DRO to DR10**, FPUL*"*?, and valid data when a program calls the
FPSCR*'*? function, the caller must save the

data onto the stack or into the
register before calling the function.
The data in registers used in called
function can be used without being
saved.

Callee-save registers R8 to R15, MACH, MACL, PR, FR12 The data in registers used in
to FR15**, and DR12 to DR14** functions is saved onto the stack at

function entry, and restored from the
stack at function exit. Note that data
in the MACH and MACL registers are
not guaranteed if the macsave=0
option is specified.

Notes: 1 Single-precision floating point registers for SH-2E, SH-3E, and SH-4.

2 Double-precision floating point registers for SH-4.

Rev. 1.0, 08/00, page 183 of 890
HITACHI

田神 憲一
SP

田神 憲一

The following examples show the rules on registers.

e A subroutinein an assembly program is called by a C/C++ program

Assembly program (callee)

. EXPORT _sub

_sub: MOV.L R14, @ R15
MOV. L R13, @ R15

ADD #- 8, R15
ADD #8, R15
MOV. L @rR15+, R13
RTS

MOV. L @R15+, R14
. END

. SECTI ON P, CODE, ALl G\=4

CI/C++ program (caller)

#i fdef _ _cplusplus
extern "C'

#endi f

voi d sub();

void f()

sub();

Rev. 1.0, 08/00, page 184 of 890

HITACHI

Saves the registers used in the function.

Processing of the function
(RO to R7 are saved by the caller
they can be used without
saving within the callee.)

Restores the saved registers.

e A function in a C/C++ program is called by an assembly program
C/C++ program (callee)

voi d sub()
{

Assembly program (caller)

The called function name prefixed with () is

- I MPORT _sub } declared by the .IMPORT directive (C).
. SECTI ON P, CODE, ALl G\=4 The external name generated from the function declaration or
. definition by the compiler is declared by the .IMPORT directive
(C++).

3 Stores the PR register (return address storage
STs. L PR @R15 register) when calling the function.
If registers RO to R7 contain valid data
MOV. L R1, @1, R15) . ,
NOV R3. R12 } _the data is pu§hed onto the stack or stored
in unused registers.

MOV. L A_sub, RO } Calls function sub.

JSR @
NOP
LDS. L @R15+, PR } Restores the PR register.
A sub: .DATA.L _sub Address data of function sub.
. END

Note: The compiler uses arule to convert the external name created by the function name or
static data member. When you need to know the external name created by the compiler,
refer to the external name created by the compiler using the code=asm or listfile option.
Defining a C++ function with extern "C" specified applies the same generation rules as C
functions to external names, although this makes overloading of the function impossible.

(4) Setting and Referencing Parameters and Return Values
This section explains how to set and reference parameters and return values.

This section first explains the general rules concerning parameters and return values, and then
how the parameter areais allocated, and how to set return values.

Rev. 1.0, 08/00, page 185 of 890
HITACHI

(a) Genera rules concerning parameters and return values
0 Passing parameters
A function is called after parameters have been copied to a parameter areain registers or on
the stack. Since the caller does not reference the parameter area after control returnsto it,
the caller is not affected even if the callee modifies the parameters.
O Ruleson type conversion
Type conversion may be performed automatically when parameters are passed or areturn
value isreturned. The following explains the rules on type conversion.
e Type conversion of parameters whose types are declared:
Parameters whose types are declared by prototype declaration are converted to the
declared types.
e Type conversion of parameters whose types are not declared:
Parameters whose types are not declared by prototype declaration are converted
according to the following rules.
(signed) char, unsigned char, (signed) short, and unsigned short type parameters are
converted to (signed) int type parameters.
float type parameters are converted to double type parameters.
Types other than the above are not converted.
« Return value type conversion:
A return value is converted to the data type returned by the function.

Examples:

(1) long f();
long f()
{ float x;
return x; <«——— Thereturnvalueisconvertedtolongby a
prototype declaration.

}

(2) wvoidp (int,...);
void f ()
{ char c;
P(1.0, c);

} c isconverted to int because atypeis not
declared for the parameter.
1.0is converted to int because the type of
the parameter isint.

Rev. 1.0, 08/00, page 186 of 890
HITACHI

(b) Parameter area allocation
Parameters are allocated to registers, or when thisisimpossible, to a stack parameter area.
Figure 9.9 shows the parameter area allocation. Table 9.6 listsrules on general parameter
area allocation. The this pointer to a nonstatic function member in C++ program is assigned

to R4.
Stack
Lower
address
sp —P
Address of the return Parameter storage registers
value
R4 FR4 (DR4)
R5 FR5
Parameter
area R6 % % FR6 (DR6)
R7 FR7
FR8 (DR8)
FR9
P
M Parameter area FR10 (DR10)
FR11

(When CPU is SH2E, SH3E, SH4)

Figure9.9 Parameter Area Allocation

Rev. 1.0, 08/00, page 187 of 890
HITACHI

Table9.6 General Ruleson Parameter Area Allocation

Parameters Allocated to Registers

Parameter Storage

Registers Target Type Parameters Allocated to a Stack
R4 to R7 char, unsigned char, bool, short, (1) Parameters whose types are other
unsigned short, int, unsigned int, than target types for register passing

long, unsigned long, float (when @)
CPU is SH-1, SH-2, SH-3),
pointer, pointer to a data member,

Parameters of a function which has
been declared by a prototype
declaration to have variable-number

and reference parameters**
1
FR4to FR11* For SH-2E and SH-3E (3) When other parameters are already
+ Parameter is float type. allocated to R4 to R7.

« Parameter is double type and (4) When other parameters are already
double=float option is allocated to FR4 (DR4) to FR11

specified. (DR10).
For SH-4

» Parameter type is float type
and fpu=double option is not
specified.

» Parameter type is double type
and fpu=single option is
specified.

DR4 to DR10 ** For SH-4

» Parameter type is double type
and fpu=single option is not
specified.

» Parameter type is float type
and fpu=double option is
specified.

Notes: 1. Single-precision floating point register for SH-2E, SH-3E, and SH-4.
2. Double-precision floating point register for SH-4.

3. If a function has been declared to have variable-number parameters by a prototype
declaration, parameters which do not have a corresponding type in the declaration and
the immediately preceding parameter are allocated to a stack.

Example:
int f2(int,int,int,int,...);

f2(a, b,c,x,y,2); « XY, andzareallocated to a stack.

Rev. 1.0, 08/00, page 188 of 890
HITACHI

(2) Parameter allocation
O Allocation to parameter storage registers

Following the order of their declaration in the source program, parameters are allocated to
the parameter storage registers starting with the smallest numbered register. Figure 9.10
shows an example of parameter allocation to registers.

f(char a,int b)
{

31 87 0

R4 Not guaranteed 5 a

R5 b

Figure9.10 Example of Allocation to Parameter Registers

O Allocation to a stack parameter area

Parameters are allocated to the stack parameter area starting from lower addresses, in the
order that they are specified in the source program.

Note: Regardless of the alignment determined by the structure type, union type, or classtype,

parameters are allocated using 4-byte alignment. Also, the area size for each parameter
must be a multiple of four bytes. Thisis because the SuperH RISC engine microcomputer
stack pointer isincremented or decremented in 4-byte units.

Refer to section 9.3.3, Examples of Parameter Assignment, for examples of parameter
allocation.

Return value writing area

The return value is written to either aregister or memory depending on itstype. Refer to
table 9.7 for the relationship between the return value type and area.

When afunction return value isto be written to memory, the return value is written to the area
indicated by the return value address. The caller must allocate the return value setting areain
addition to the parameter area, and must set the address of the return value areain the return
value address area before calling the function (see figure 9.11). The return valueis not written
if itstypeisvoid.

Rev. 1.0, 08/00, page 189 of 890
HITACHI

Table9.7 Return Value Typeand Setting Area

Return Value Type

Return Value Area

(signed) char, unsigned char,
(signed) short, unsigned short,
(signed) int, unsigned int, long,
unsigned long, float, pointer, bool,
reference, and pointer to a data
member

RO: 32 bits

(The contents of the upper three bytes of (signed) char, or
unsigned char and the contents of the upper two bytes of
(signed) short or unsigned short are not guaranteed.)

However, when the rtnext option is specified, sign extension
is performed for (signed) char or (signed) short type, and
zero extension is performed for unsigned char or unsigned
short type.

FRO: 32 bits
(1) For SH-2E and SH-3E
* Return value is float type.
* Return value is double type and double=float option
is specified.
(2) For SH-4
* Return value is float type and fpu=double option is
not specified.

» Return value is floating-point type and fpu=single
option is specified.

double, long double, structure, union, Return value setting area (memory)

class, and pointer to a function
member

DRO: 64 bits
For SH-4

* Return value is double type and fpu=single option is
not specified.

» Return value is floating-point type and fpu=double
option is specified.

Rev. 1.0, 08/00, page 190 of 890

HITACHI

SP

Stack

Return value
address area

/1\ Lower address

Parameter
area

\1/ Higher address

Return value
setting area
(allocated by the
calling function)

Figure9.11 Return Value Setting Area Used When Return Valuels Written to Memory

HITACHI

Rev. 1.0, 08/00, page 191 of 890

9.3.3 Examples of Parameter Assignment

Example 1 Arguments passed by are assigned, in the order in which they are

declared, to registers R4 to R7.

int f(char,short,int,float); R4 Not guaranteed | 1
: R5 | Not guaranteed | 2
f(1,2,3,4.0); R6 3
R7 4.0
Example 2 Arguments that cannot be assigned to registers are assigned to the

stack. When the arguments are (unsigned) char or (unsigned) short types and are
assigned to the argument area in the stack, they are first extended to 4 bytes.

int f(int,short,long,float,char); R4
: R5
f(1,2,3,4.0,5); R6
R7

Argument area
(stack)

1

Not guaranteed |

3

4.0

1 Lower address

Not guaranteed

| 5 |

L Higher address

Example 3 Arguments of types that cannot be assigned to registers are assigned to

the stack.
struct s{int x,y;}a; R4
int f(int,struct s,int); R5

f(1,a,3);

t Lower address

Argument area

a.x

(stack)

ay

Rev. 1.0, 08/00, page 192 of 890
HITACHI

L Higher address

Example 4 When declared in a prototype declaration as a function with avariable
number of arguments, the arguments without corresponding types and the immediately
preceding argument are assigned to the stack in the order in which they are declared.

int f(double, int, int..); R4 2

f(1.0,2,3,4); t Lower address

1.0
Argument area
(stack)

L Higher address

Example 5 When the type returned by afunction is more than 4 bytes, or aclass,
the return value address is set immediately before the argument area. If the size of the
classis not amultiple of 4 bytes, unused space is padded.

struct s{char x,y, z;}a; Argument area Return value address
doubl e f(struct s); (stack) Unused
: a.x ay a.z space
f(a);
¢ 1 Lower address

| Area for setting return value

L Higher address

Rev. 1.0, 08/00, page 193 of 890
HITACHI

Example 6 When the CPU is SH-2E or SH-3E, float type arguments are assigned

to the FPU registers.

int f(char,float,short,float, doubl e); R4 [Notguaranteed | 1
. R5 Notguaranteed| 3
f(1,2.0,3,4.0,5.0); R6

R7

Argument area
(stack)

Rev. 1.0, 08/00, page 194 of 890
HITACHI

FR4
FRS5
FR6
FR7
FR8
FR9
FR10
FR11

2.0

4.0

1 Lower address

5.0

L Higher address

Example 7 When the CPU is SH-4 and fpu option is not specified, float and
doubl e type arguments are assigned to the FPU registers.

int f(char,float, double,float,short); FR4(DR4) 2.0
FRS 5.0
f(1,2.0,4.0,5.0,3); FR6(DR6) 4.0
FR7
FR8(DRS8)
R4 Not guaranteed | 1 FR9
R5 Notguaranteed| 3 FR10(DR10)
R6 FR11
R7

9.3.4 Using the Register sand Stack Area

This section describes how the compiler uses registers and stack areas. Registers and stack areasin
functions are controlled by the compiler and the user is not required to have any particular
understanding of how these areas are used. Figure 9.11 shows how the register and stack areas are
used.

Rev. 1.0, 08/00, page 195 of 890
HITACHI

Lower

(SH-2E, SH-3E, SH-4 only) address
A
FRO (DRO) RO Stack area
FR1 R1
FR2 (DR2) R2 Function Frame
work area size
FR3 R3
FR4 (DR4) R4 }[Stack
Return value address 4 Bytes | frame
FR5 R5 y
FR6 (DR6) R6
Argument area
FR7 R7
FR8 (DR8) R8
Stack area
FR9 R9 ¥
¢ Higher
FR10 (DR10) R10 address
FR11 R11
FR12 (DR12) R12
FR13 R13
FR14 (DR14) R14
FR15 R15
(SP)

FRO to FR15 For variables and temporary storage RO to R14 For variables and temporary storage

(DRO) (DR14) (intermediate results of operations) (intermediate results of operations)

FR4 to FR11 For storing arguments. Indicated by [[__1]. R4 to R7 For storing arguments. Indicated by [[__1].

(DR4) (DR10)

Figure9.12 Using Register and Stack Areas

Rev. 1.0, 08/00, page 196 of 890
HITACHI

94 Important Information on Programming

In this section, important information on writing program code for the compiler, and mattersto
bear in mind during development of a program from compiling through debugging, are discussed.

9.4.1 Important Information on Program Coding
(1) Float Type Parameter Function

Functions must declare prototypes or change float type to double type when receiving and passing
float type parameters. Data value cannot be guaranteed when afloat type parameter without a
prototype declaration receives data.

Rev. 1.0, 08/00, page 197 of 890
HITACHI

Example:

void f (float);

void g ()
{
float a;
f (a);
}
void f (float x)
{
}

Function f has afloat type parameter. Therefore, a prototype must be declared.
(2) Expressionswhose Evaluation Order isnot Specified by the C/C++ Language

The effect of the execution is not guaranteed in a program whose execution results differ
depending on the evaluation order.

Example:
ali]=a[++i]; The value of i on the left side differs depending on whether the
right side of the assignment expression is evaluated first.
sub(++i, i); The value of i for the second parameter differs depending on

whether the first function parameter is evaluated first.

Rev. 1.0, 08/00, page 198 of 890
HITACHI

(3) Overflow Operation and Zero Division

At runtimeif overflow operation or zero division is performed, error messages will not be output.
However, if an overflow operation or zero division isincluded in the operations of constants, error
messages will be output at compilation.

Example:
voi d mai n()
{
int ia;
int ib;
float fa;
float fb;
i b=32767;
f b=3. 4e+38f;
/* Conpilation error nessages are output when an overfl ow */
/* operation and zero division are included in operations */
/* of constants. */
i a=99999999999; /* (W Detect integer constant overflow */
fa=3. 5e+40f; /* (W Detect floating pointing constant */
/* overfl ow */
i a=1/0; /* (E) Detect division by zero. */
fa=1.0/0. 0; /* (W Detect division by floating point */
/* zero. */
/* No error nmessage on overflow at execution is output. */
i b=i b+32767; /* lgnore integer constant overfl ow. */
f b=f b+3. 4e+38f; /* Ignore floating point constant */
/* overfl ow */
}

Rev. 1.0, 08/00, page 199 of 890
HITACHI

(4) Assignment to const Variables

Even if avariable is declared with const type, if assignment is done to a non-constant variable
converted from const type or if a program compiled separately uses a parameter of a different
type, the compiler cannot detect the error.

Example:
const char *p; /* Because the first paraneter p in library */
/* function strcat is a pointer for char, */
/* the area indicated by the parameter p */
strcat(p, "abc"); /* may change. */
file 1
const int i;
file 2
extern int i; /* In file 2, paraneter i is not declared as */
/* const, therefore assignnent to it in */
i =10; /* file 2 is not an error */

Rev. 1.0, 08/00, page 200 of 890
HITACHI

(5) Precision of Mathematical Function Libraries

For function acos (x) and asin (x), an error islarge around x=1. Therefore, precautions must be

taken. Note the error range below.

Absolute error for acos (1.0 — €)

double precision 27 (g = 27%)

single precision 27 (e = 27°)

Absolute error for asin (1.0 — €)

double precision 27 (g = 27%)

single precision 27 (e = 27°)

94.2

(1) Function prototype declarations

Important Information on Compiling a C Program with the C++ Compiler

Before using a function, a prototype declaration is necessary. At this time the types of

parameters should also be declared.

extern void funcl();
voi d g()
{

funcl(1); // error
}

(2) Linkage of const objects

extern void funcl(int);
voi d g()

{
funcl(1l); // K

Whereasin C programs const objects are linked externally, in C++ programs they are linked
internally. In addition, const objects requireinitial values.

const cval uel;
/] error

const cvalue2 = 1;
/1l internal

const cval uel=0;

/1 gives initial value
extern const cvalue2 = 1;
/1 links externally
/1l as a C program

HITACHI

Rev. 1.0, 08/00, page 201 of 890

(3) Assignment of void*

In C++ programs, if explicit casting is not used, assignment of pointersto other objects
(excluding pointers to functions and to members) is not possible.

void func(void *ptrv, int *ptri) void_gunc(void *ptrv, int
*ptri
{ _ | {
ptri = ptrv; ptri = (int *)ptrv;
/1 error /] OK
} }
9.4.3 Important Information on Program Development

Important information for program development, from program creation to debugging, is
described below.

(1) Information concerning selection of the CPU
(a) The same CPU should be specified at compile time and assembly time.

The CPU specified using the cpu option at compile and assembly time must always be the
same. If object programs created for different CPUs are linked, operation of the object
program at runtime is not guaranteed.

(b) The same CPU type as the CPU specified at compile time should be specified at assembly
time.

When assembling an assembly program generated by the C compiler, the cpu option should
be used to specify the same CPU type specified by the CPU at compile time.

(c) At link time, the standard library appropriate to the CPU should be linked.

A library appropriate to the CPU should always be specified. Operation in the event that an
inappropriate library is linked is not guaranteed.
(2) Important information on function interface

The options relating to function interface listed below should always be the same at compile
time and when building libraries. If object programs created using different options are linked,
operation of the object program at runtime is not guaranteed.

endian = big | little (SH-3, SH-3E, SH-4)

pic=0|1 (excluding SH-1)

fpu = single | double (SH-4)

fpscr = safe | aggressive (SH-4)

round = zero | nearest (SH-4)

denormalization = off | on (SH-4)

double = float (excluding SH-4)

exception | noexception

rtti = on | off

Oooooooogoono

Rev. 1.0, 08/00, page 202 of 890
HITACHI

Section 10 C/C++ Language Specifications

10.1 Language Specifications

10.1.1 Compiler Specifications

The following shows compiler specifications for the implementation-defined items which are not
prescribed by language specifications.

(1) Environment

Table10.1 Environment Specifications

No. Item Compiler Specifications
1 Purpose of actual argument for the “main” Not stipulated
function
2 Structure of interactive 1/O devices Not stipulated
(2) Identifiers

Table10.2 Identifier Specifications

No. Item Compiler Specifications

1 Number of valid letters in non externally-linked Up to 8189 letters in both external and
identifiers (internal names) internal names

2 Number of valid letters in externally-linked Up to 8191 letters in both external and
identifiers (external names) internal names

3 Distinction of uppercase and lowercase letters Uppercase and lowercase letters are

in externally-linked identifiers (external names) distinguished

Rev. 1.0, 08/00, page 203 of 890
HITACHI

(3) Characters

Table 10.3 Character Specifications

No. Item

Compiler Specifications

1 Elements of source character sets and
execution environment character sets

Source program character sets and
execution environment character sets are
both ASCII character sets. However,
string literals and character constants can
be written in shift JIS code, or EUC
Japanese character code.

2 Shift states used in coding multi-byte Shift states are not supported.
characters
3 Number of bits in characters in character sets 8-bit

in program execution

4 Relationship between source program
character sets in character constants and
string literals and characters in execution
environment character sets

Corresponds to same ASCII characters.

5 Values of characters not stipulated in
language specifications and integer character
constants that include extended notation

Characters and extended notations which
are not stipulated in the language
specifications are not supported.

6 Values of character constants that include two
or more characters, and wide character
constants that include two or more multi-byte

The first two characters of character
constants are valid. Wide character
constants are not supported. Note that a

characters warning error message is output if you
specify more than one character.
7 Specifications of locale used for converting locale is not supported.

multi-byte characters to wide characters

8 char type value

Same value range as signed char type.

Rev. 1.0, 08/00, page 204 of 890

HITACHI

(4) Integers

Table10.4 Integer Specifications

No. Item Compiler Specifications
1 Representation and values of integers See table 10.5.
2 Values when integers are converted to shorter The least significant two bytes or least

signed integer types or unsigned integers are significant one byte of the integer value
converted to signed integer types of the same are the post-conversion value.

size (when converted values cannot be

represented by the target type)

3 Result of bit-wise operations on signed Signed value.
integers
4 Remainder sign in integer division Same sign as dividend.

Result of right shift of signed integral types Maintains sign bit.
with a negative value

Table 10.5 Range of Integer Typesand Values

No. Type Value Range Data Size
1 char -128 to 127 1 byte

2 signed char -128 to 127 1 byte

3 unsigned char 0 to 255 1 byte

4 short -32768 to 32767 2 bytes

5 unsigned short 0 to 65535 2 bytes

6 int —2147483648 to 2147483647 4 bytes

7 unsigned int 0 to 4294967295 4 bytes

8 long —2147483648 to 2147483647 4 bytes

9 unsigned long 0 to 4294967295 4 bytes

Rev. 1.0, 08/00, page 205 of 890
HITACHI

(5) Floating-point numbers

Table 10.6 Floating-Point Number Specifications

No. Item Compiler Specifications

1 Representation and values of floating-point There are three types of floating-point
type numbers: float, double, and long double

2 Method of truncation when integers are types. See section 10.1.3, Floating-Point

Number Specifications, for the internal

converted into floating-point numbers that) . .
representation of floating-point types and

cannot accurately represent the actual value

specifications for their conversion and

3 Methods of truncation or rounding when operation. Table 10.7 shows the limits of
floating-point numbers are converted into floating-point type values that can be
shorter floating-point numbers expressed.

Table 10.7 Limitsof Floating-Point Number Values

Limits
No. Item Decimal Notation* Hexadecimal Notation
1 Maximum value of float type 3.4028235677973364e+38f Vatdiiiii
(3.4028234663852886e+38f)
2 Minimum positive value of float 7.0064923216240862e-46f 00000001
type (1.4012984643248171e-45f)
3 Maximum values of double 1.7976931348623158e+308 TTeffffffffffff
type and long double type (1.7976931348623157e+308)
4 Minimum positive values of 4,9406564584124655e-324 0000000000000001
double type and long double (4.9406564584124654e-324)
type
Notes: 1. The limits for decimal notation are 0 or infinity. Values in parentheses are theoretical
values.

2. If double=float is specified, double type is treated as float type. If fpu=single is
specified, double and long double types are treated as float type. If fpu=double is
specified, float type is treated as double type.

Rev. 1.0, 08/00, page 206 of 890
HITACHI

(6) Arraysand Pointers

Table 10.8 Array and Pointer Specifications

No. Item Compiler Specifications
1 Integer type (size_t) required to hold maximum Unsigned long type
array size
2 Conversion from pointer type to integer type Value of least significant byte of pointer

(pointer type size >= integer type size)

type

3 Conversion from pointer type to integer type
(pointer type size < integer type size)

Sign extension

4 Conversion from integer type to pointer type
(integer type size >= pointer type size)

Value of least significant byte of integer
type

5 Conversion from integer type to pointer type Sign extension
(integer type size < pointer type size)

6 Integer type (ptrdiff_t) required to hold int type
difference between pointers to members in the
same array

(7) Registers

Table10.9 Register Specifications

No. Item

Compiler Specifications

1 Maximum number of register variables that
can be assigned to registers

7: char, unsigned char, bool, short,
unsigned short, int, unsigned int, long,
unsigned long, pointer

4: float™
2: double™

2 Types of register variables that can be
assigned to registers

char, unsigned char, bool,
short, unsigned short,

int, unsigned int,

long, unsigned long,
float*', double *', pointer

Note: *1. When cpu=sh2e, sh3e, or sh4.

Rev. 1.0, 08/00, page 207 of 890

HITACHI

(8) Classes, Structures, Unions, Enumeration Types, and Bit Fields

Table 10.10 Class, Structure, Union, Enumeration Type, and Bit Field Specifications

No. Item Compiler Specifications
1 Referencing members in union type accessed Can be referenced but value cannot be
by members of another type guaranteed.
2 Boundary alignment of class and structure The maximum data size of the class and
members structure members is used as the
boundary alignment value. For details on
assignment, see section 10.1.2 (2),
Compound Type (C), Class Type (C++).
Sign of bit fields of simple int types signed int type
4 Order of bit fields within int type size Assigned from most significant bit.
Method of assignation when the size of a bit ~ Assigned to next int type area.
field assigned after a bit field is assigned
within an int type size exceeds the remaining
size in the int type
6 Permissible type specifiers in bit fields char, unsigned char, bool, short,
unsigned short, int, unsigned int, long,
unsigned long, enum type
7 Integer type representing value of int type

enumeration type

For details of assignment of bit fields, see section 10.1.2 (3), Bit Fields.

(9) Modifiers

Table 10.11 Modifier Specifications

No.

Item

Compiler Specifications

1

Types of volatile data access

Not stipulated

Rev. 1.0, 08/00, page 208 of 890

HITACHI

(10) Declarations

Table 10.12 Declaration Specifications

No. Item Compiler Specifications

1 Number of types (arithmetic types, structure 16 max.
types, union types) modifying basic types

The following are examples of counting the number of types modifying basic types.

i. inta Here ahasanint type (basic type) and the number of types modifying the basic type
isO.

ii. char *f(); Here, f has afunction type returning a pointer type to a char type (basic type), and
the number of types modifying the basic typeis 2.

(11) Statements

Table 10.13 Statement Specifications

No. Item Compiler Specifications

1 Number of case labels that can be declared in 511 max.
one switch statement

Rev. 1.0, 08/00, page 209 of 890
HITACHI

(12) Preprocessor

Table 10.14 Preprocessor Specifications

No. Item Compiler Specifications
1 Relationship between single-character Preprocessor statement character
character constants in constant expressions in constants are the same as the execution
a conditional compile, and character sets in environment character set.
the execution environment
2 Method of reading include files Files enclosed in “<” and “>" are read
from the directory specified in the include
option. If the specified file is not found,
the directory specified in environment
variable SHC_INC is searched, followed
by the system directory (SHC_LIB).
3 Support for include files enclosed in double Supported. Include files are read from the
quotation marks current directory. If not found in the
current directory, the file is searched for
as described in 2, above.
4 Space characters in string literals after a A string of space characters are
macro is expanded expanded as one space character.
5 Operation of #pragma statements See section 10.2.1, #pragma Extension.

__DATE_ _and _ _TIME_ _ value

A value is specified based on the host
computer’s timer at the start of compiling.

Rev. 1.0, 08/00, page 210 of 890

HITACHI

10.1.2 Internal Data Representation

This section explains the data type and the internal data representation. The internal data
representation is determined according to the following four items:

1. Size
Shows the memory size necessary to store the data.
2. Boundary alignment

Restricts the addresses to which datais alocated. There are three types of alignment; 1-byte
alignment in which data can be allocated to any address, 2-byte alignment in which datais
allocated to even byte addresses, and 4-byte alignment in which datais alocated to addresses
of multiples of four bytes.

3. Datarange
Shows the range of data of scalar type (C) or basic type (C++).
4. Dataallocation example
Shows an example of assignment of element data of compound type (C) or class type (C++).

Rev. 1.0, 08/00, page 211 of 890
HITACHI

(1) Scalar Type(C), Basic Type (C++)

Table 10.15 shows internal representation of scalar type datain C and basic type datain C++.

Table 10.15 Internal Representation of Scalar-Type and Basic-Type Data

Size Alignment Data Range
Data Type (bytes) (bytes) Sign Minimum Value Maximum Value
char 1 1 Used -2"(-128) 2" -1 (127)
signed char 1 1 Used -27 (-128) 2'-1(127)
unsigned char 1 1 Unused O 2° -1 (255)
short 2 2 Used -2% (-32768) 2 - 1 (32767)
unsigned short 2 2 Unused O 2'° -1 (65535)
int 4 4 Used —2% (-2147483648) 2% -1 (2147483647)
unsigned int 4 4 Unused O 2% - 1 (4294967295)
long 4 4 Used —2% (-2147483648) 2% -1 (2147483647)
unsigned long 4 4 Unused O 2% -1 (4294967295)
enum 4 4 Used —2% (-2147483648) 2% -1 (2147483647)
float 4%° 4 Used —o0 +00
double gxtx* 4 Used —0o +00
long double
Pointer 4 4 Unused O 2% -1 (4294967295)
bool** 4 4 Used O
Reference*’ 4 4 Unused O 2% -1 (4294967295)
Pointer to adata 4 4 Used 0 2% -1 (4294967295)
member*?
Pointer to a 12 4 O ad
function
member****
Notes: 1. The size of double type is 4 bytes if double=float option is specified.

2. These data types are valid for C++ compilation only.

3. If cpu=sh4 and fpu=single options are both specified, double type and long double type
are treated as 4 bytes (float type). If cpu=sh4 and fpu=double are both specified, float

type is treated as 8 bytes (double type).

4. Pointers to function and virtual function members are represented by classes in the
following data structure.

Rev. 1.0, 08/00, page 212 of 890

HITACHI

class _PMF{

public:
| ong d; /1 oj ect of fset val ue.
long i; /11 ndex in the virtual
//function table when
//the target function is the
[lvirtual function.
uni on{
void (*f)(); /1 Address of a function when
//the target function is a
/I non-virtual function.
| ong of fset; /1 oj ect offset value of the
[/virtual function table
//when the target function
/lis the virtual function.
}

Rev. 1.0, 08/00, page 213 of 890
HITACHI

(2) Compound Type(C), Class Type (C++)

This section explains internal representation of array type, structure type, and union type datain C
and classtype datain C++.

Table 10.16 shows internal representation of compound type and class type data.

Table 10.16 Internal Representation of Compound Type and Class Type Data

Data Type Alignment (bytes) Size (bytes) Data Allocation Example
Array Array element alignment Number of array elements char a[10];
x element size Alignment: 1 byte
Size: 10 bytes
Structure Maximum structure Total size of members. struct {
member alignment Refer to Structure Data char a, b;
Allocation, below. };
Alignment: 1 byte
Size: 2 bytes
Union Maximum union member Maximum size of member. uni on {
alignment Refer to Union Data char a, b;
Allocation, below. };
Alignment: 1 byte
Size: 1 byte
Class 1. Always 4 if a virtual Sum of data members, class B:public A {
function is included pointer to the virtual function virtual void f();
table, and pointer to the };

2. Othgr than 1 above: virtual base class Alignment: 4 bytes
maximum member Refer to Class Data Size: 8 bytes
alignment Allocation, below. class A {

char a;
} .

Alignment: 1 byte
Size: 1 byte

Rev. 1.0, 08/00, page 214 of 890
HITACHI

In the following examples, a rectangle indicates four bytes. The diagona line represents blank area
for alignment.

Structure Data Allocation:

» When structure members are allocated, an unused area may be generated between structure
members to align data types.

struct {
char a;
int b;
} obj

obj.a

obj.b

» If astructure has 4-byte alignment and the last member ends at an 1-, 2-, or 3-byte address, the
following 3-, 2-, or 1-byte isincluded in this structure.

struct {
int a;
char b;
} obj

obj.a

obj.b

Union Data Allocation:

* When an union has 4-byte alignment and its maximum member size is not a multiple of four,
the remaining bytes up to amultiple of four isincluded in this union.

uni on {
int a;
char b[7];
} oo
U oL S
0.b[0] 0.b[1] 0.b[2] 0.b[3]
ob4] | ob5] | obe] |

Rev. 1.0, 08/00, page 215 of 890
HITACHI

Class Data Allocation:

» For classes having no base class or virtual functions, data members are all ocated according to
the alocation rules of structure data.

class A{

char datai;

i nt data?;
public:

A();

int getDatal(){return datal;}
}obj;

obj.data1!

obj.data2

» If aclassisderived from abase class of 1-byte alignment and the start member of the derived
classis 1-byte data, data member is allocated without padding.

class A{
char dat ail;

s

class B:public A{
char data2;
short dat a3;

}obj;

obj.datal:obj.data2: obj.data3

Rev. 1.0, 08/00, page 216 of 890
HITACHI

» For aclass having avirtua base class, a pointer to the virtual base classis allocated.

class A{
short datal;

b

class B: virtual protected A{
char dat a2;

}obj ;

obj.data2
[| Pointer to the virtual base class (generated by the compiler)
obj.datal :

» For aclass having virtual functions, the compiler creates avirtual function table and allocates a
pointer to the virtual function table.

class A{
char datal;
public:
virtual int getDatal();
}obj ;

obj.datal
Pointer to the virtual function table (generated by the compiler)

Virtual function table (generated by the compiler)
0
A:getDatal

Rev. 1.0, 08/00, page 217 of 890
HITACHI

* Anexampleisshown for class having virtual base class, base class, and virtual functions.

class A{
char datal,;
virtual short getDatal();
b
class B:virtual public A{
char dat az2;
char getData2();
short getDatal();
b
class Cvirtual protected A{
i nt dat a3;
b
class D:virtual public A public B,public [
public:
i nt dat a4;
short getDatal();
}obj ;

obj.data2

Pointer to the virtual function table (generated by the compiler)

Pointer to the virtual base class (generated by the compiler)

obj.data3

Pointer to the virtual base class (generated by the compiler)

obj.data4

obj.datal

Pointer to the virtual function table (generated by the compiler)

Virtual function table (generated by the compiler)

v

-18

A:.getDatal

Virtual function table (generated by the compiler)

v

0

B::getDatal

Rev. 1.0, 08/00, page 218 of 890

HITACHI

Note that non-virtua function does not occupy an areain aclass.

For an empty class, a 1-byte dummy areais assigned.

class A{
void fun();
}obj;
One byte
Dummy area

For an empty class having empty class asits base class, the dummy areais 1 byte.

class A

void fun();
b
class B: A{

voi d sub();
}obj;

One byte
Dummy area

Dummy areas shown in the above two examples are allocated only when the class sizeis 0. No
dummy ariais allocated if abase class or a derived class has a data member or has a virtual
function.

class A{
void fun();
s
class B: A{
char dat ail;
}obj;
One byte
obj.datal

Rev. 1.0, 08/00, page 219 of 890
HITACHI

(3) Bit Fields

A bit field isamember allocated with a specified size in a structure or aclass. This part explains
how bit fields are allocated.

Bit Field Members. Table 10.17 shows the specifications of bit field members.

Table 10.17 Bit Field Member Specifications

Item Specifications

Type specifier allowed for bit fields (signed) char, unsigned char, bool**
(signed) short, unsigned short, enum
(signed) int, unsigned int
(signed) long, unsigned long

How to treat a sign when data is A bit field with no sign (unsigned is specified for type): Zero
extended to the declared type*? extension*®
A bit field with a sign (unsigned is not specified for type):
Sign extension**

Notes: 1. The bool type is only valid at C++ compilation.

2. To use a bit field member, data in the bit field is extended to the declared type. One-bit
field data with a sign is interpreted as the sign, and can only indicate 0 and -1. To
indicate 0 and 1, bit field data must be declared with unsigned.

3. Zero extension: Zeros are written to the upper bits to extend data.

4. Sign extension: The most significant bit of a bit field is used as a sigh and the sign is
written to all higher-order bits to extend data.

Rev. 1.0, 08/00, page 220 of 890
HITACHI

Bit Field Allocation: Bit field members are allocated according to the following five rules:
» Bit field members are placed in an area beginning from the left, that is, the most significant bit.
struct bl {
int a:2;
int b:3;
X

Bit31 ‘ 0
xa: Xb
c2%x—3—
» Consecutive bit field members having type specifiers of the same size are placed in the same
area as much as possible.

struct bl {
| ong a: 2;
unsi gned int b:3
by

’

Bit31 ' 0
ya: yb

c2%—3

» Bit field members having type specifiers with different sizes are allocated to the separate areas.

struct bl {

i nt a: 5;
char b: 4;
} oz

Bit 31 0
za | |
—5—
z.b ‘

Rev. 1.0, 08/00, page 221 of 890
HITACHI

« If the number of remaining bitsin the areais less than the next bit field size, though type
specifier indicate the same size, the remaining areais not used and the next bit field is
allocated to the next area.

struct b2 {
char a:. 5;
char b: 4;
}ovs

Bit 15 87 ' 0

va _— . vb | _—]

s roa

» |f abit field member with abit field size of 0 is declared, the next member is allocated to the
next area.

struct b2 {
char a: 5;
char . 0;
char c:3;
}ow

Bit 15 87 0
| va | _— vb !
s o

Rev. 1.0, 08/00, page 222 of 890
HITACHI

(4) Memory Allocation of Little Endian
In little endian, data are allocated in the memory as follows:

One-byte data ((signed) char, unsigned char, and bool type): The order of bitsin one-byte
data for abig endian and alittle endian is the same.

Two-byte data ((signed) short and unsigned short type): The upper byte and the lower byte
will be reversed in two-byte data between a big endian and alittle endian.

Example: When atwo-byte data 0x1234 is allocated at an address 0x100:

big endian: address 0x100; 0x12 littleendian: address 0x100: 0x34
address 0x101: 0x34 address 0x101: 0x12

Four-byte data ((signed) int, unsigned int, (signed) long, unsigned long, and float type): The
upper byte and the lower byte will be reversed in four-byte data between abig endian and alittle
endian.

Example: When afour-byte data 0x12345678 is allocated at an address 0x100:

big endian: address 0x100; 0x12 little endian: address 0x100: 0x78
address 0x101: 0x34 address 0x101: 0x56
address 0x102: 0x56 address 0x102: 0x34
address 0x103: 0x78 address 0x103:; 0x12

Eight-byte data (double type): The upper byte and lower byte will be reversed in eight-byte data
between abig endian and alittle endian.

Example: When an eight-byte data 0x123456789abcdef is allocated at an address 0x100:

big endian: address 0x100; 0x01 little endian: address 0x100: Oxef
address 0x101: 0x23 address 0x101: Oxcd
address 0x102: 0x45 address 0x102: Oxab
address 0x103: 0x67 address 0x103: 0x89
address 0x104: 0x89 address 0x104: 0x67
address 0x105: Oxab address 0x105:; 0x45
address 0x106: Oxcd address 0x106:; 0x23
address 0x107: Oxef address 0x107: 0x01

Compound-type and class-type data: Members of compound-type and class-type datawill be
allocated in the same way as that of abig endian. However, the order of byte data of each member
will be reversed according to the rule of data size.

Rev. 1.0, 08/00, page 223 of 890
HITACHI

Example: When the following function exists at an address 0x100:

struct {
short a;
int b;

}z= {0x1234,

big endian:

Bit field: Bit fieldswill be allocated in the same way as a big endian.

0x56789abc};

address 0x100:
address 0x101.:
address 0x102:
address 0x103:
address 0x104:
address 0x105:
address 0x106:
address 0x107:

0x12
0x34
empty area
empty area
0x56
0x78
0x9%a
Oxbc

little endian:

datain each areawill be reversed according to the rule of data size.

Example: When the following function exists at an address 0x100:

struct {

| ong a: 16;

unsi gned int b:15;

short c:5
Yy={1,1,1};

big endian:

address 0x100:
address 0x101.:
address 0x102;
address 0x103;
address 0x104:
address 0x105:
address 0x106:
address 0x107:

Rev. 1.0, 08/00, page 224 of 890

0x00
0x01
0x00
0x02
0x08
0x00
empty area
empty area

little endian:

HITACHI

address 0x100:
address 0x101.:
address 0x102:
address 0x103:
address 0x104:
address 0x105:
address 0x106:
address 0x107:

0x34
0x12
empty area
empty area
Oxbc
0x9a
0x78
0x56

However, the order of byte

address 0x100:
address 0x101.:
address 0x102;
address 0x103;
address 0x104:
address 0x105:
address 0x106:
address 0x107:

0x02
0x00
0x01
0x00
0x00
0x08
empty area
empty area

10.1.3 Floating-Point Number Specifications

() Internal Representation of Floating-Point Numbers
Floating-point numbers handled by this compiler are internally represented in the standard
|EEE format. This section outlines the internal representation of floating-point numbersin the
|EEE format.
(a) Format for internal representation
float types are represented in the | EEE single-precision (32-bit) format, while double types
and long double types are represented in the | EEE double-precision (64-bit) format.
(b) Structure of internal representation
Figure 10.1 shows the structure of the internal representation of float, double, and long

double types.
float type
3130 2322 0
] ‘\Exponent (8 bits)\ Mantissa (23 bits) \
\
Sign (1 bit)
double type and long double type
63 62 5251 0
] ‘\Exponent (11 bits)\ Mantissa (52 bits)
\
Sign (1 bit)

Note: When the -double=float option is specified, double types are internally represented
in the same format as float types. When the cpu=sh4 and fpu=single options are
specified, double types and long double types are internally represented in the same
format as float types. When the cpu=sh4 and fpu=double options are specified,
float types are internally represented in the same format as double types.

Figure10.1 Structure of Internal Representation of Floating-Point Numbers

Theinternal representation format consists of the following parts:
i. Sign
Shows the sign of the floating-point number. O is positive, and 1 is negative.
ii. Exponent
Shows the exponent of the floating-point number as a power of 2.
iii. Mantissa
Shows the data corresponding to the significant digits (fraction) of the floating-point
number.

Rev. 1.0, 08/00, page 225 of 890
HITACHI

(c) Types of represented values of floating-point number

In addition to the normal real numbers, floating-point numbers can also represent values
such asinfinity. The following describes the types of values represented by floating-point
numbers.

i. Normalized numbers
Represents normal real values; the exponent is not 0 or not all bits are 1.
ii. Denormalized numbers

Represents real values having small absolute numbers; the exponent is 0 and the
mantissa is other than 0.

iii. Zero

Represents the value 0.0; the exponent and mantissa are 0.
iv. Infinity

Represents infinity; all bits of the exponent are 1 and the mantissais 0.
v. Not-a-number

Represents the result of operation such as "0.0/0.0", "oo/c0", Or "00-00", which does not
correspond to a number or infinity; all bits of the exponents are 1 and the mantissais
other than 0.

Table 10.18 shows the types of values represented as floating-point numbers.

Table 10.18 Types of Values Represented as Floating-Point Numbers

Exponent
Mantissa 0 Not O or not all bits are 1 All bits are 1
0 0 Normalized number Infinity
Other than 0 Denormalized number Not-a-number

Note: Denormalized numbers are floating-point numbers of small absolute values that are outside
the range represented by normalized numbers. There are fewer valid digits in a
denormalized number than in a normalized number. Therefore, if the result or intermediate
result of a calculation is a denormalized number, the number of valid digits in the result
cannot be guaranteed. When the CPU is an SH-4, denormalized numbers are processed
as 0 when option
denormalize=off is specified. When denormalize=on is specified, denormalized numbers are
processed as denormalized numbers.

Rev. 1.0, 08/00, page 226 of 890
HITACHI

(2) float type
float types are internally represented by a 1-hit sign, an 8-bit exponent, and a 23-bit mantissa.

Normalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
between 1 and 254 (2°-2). The actual exponent is gained by subtracting 127 from this
value. The range is between —126 and 127. The mantissa is between 0 and 2*-1. The actual
mantissais interpreted as the value of which 2”rd bit is 1 and this bit is followed by the
decimal point. Values of normalized numbers are as follows:

(—1)°" x 257" (1+(mantissa) x 277)

Example:
31 30 23 22 0
|1|1000OOOO 11000000000000000000000
Sign: -
Exponent: 10000000, — 127 = 1, where , indicates binary
Mantissa 111, = 1.75
Value: -1.75x2' = -35

. Denormalized numbers

The sign indicates the sign of the value, either 0 (positive) or 1 (negative). The exponent is
0 and the actual exponent is —126. The mantissais between 1 and 2°-1, and the actual
mantissais interpreted as the value of which 2”rd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:

(-1)°" x 27 x ((mantissa) x 27%)
Example:

3130 23 22 0
0/00000000 [11000000000000000000000

Sign: +

Exponent: -126

Mantissa: 0.11, = 0.75, where ,, indicates binary
Vaue: 0.75x 27%

Rev. 1.0, 08/00, page 227 of 890
HITACHI

iii. Zero
Thesignis 0 (positive) or 1 (negative), indicating +0.0 or —0.0, respectively. The exponent
and mantissa are both 0.

+0.0 and —-0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

iv. Infinity
Thesignis O (positive) or 1 (negative), indicating +co or —oo, respectively.
The exponent is 255 (2°-1).
The mantissaisO.
v. Not-a-number
The exponent is 255 (2°-1).
The mantissais avaue other than 0.

Notee When the CPU is SH-2E, SH-3E, or SH-4, not-a-number is called a gNaN when the MSB
of the mantissais 0, or sNaN when the MSB of the mantissais 1. There are no
specifications regarding the values of other mantissafields or the sign.

Rev. 1.0, 08/00, page 228 of 890
HITACHI

(3) doubletypes and long double types

double types and long double types are internally represented by a 1-bit sign, an 11-bit

exponent, and a 52-hit mantissa.

i. Normalized numbers
The sign indicates the sign of the value, either O (positive) or 1 (negative). The exponent is
between 1 and 2046 (2"'-2). The actual exponent is gained by subtracting 1023 from this
value. The range is between —1022 and 1023. The mantissa is between 0 and 2%-1. The
actual mantissais interpreted as the value of which 2*nd bit is 1 and this bit is followed by
the decimal point. Values of normalized numbers are as follows:

(_l)sgn X 2exp0nent—1023 X (1+(mant|$a) X 2—52)
Example:

63 62 5251 0
’0‘01111111111‘111000OOOOO00OOOOOO00OOOOOO0OOOOOOOOOOOOOOOOOOOOOOOO

Sign: +
Exponent: 1111111111, -1023 = 0O, where , indicates binary

Mantissa 1111, = 1875
Vaue 1.875x 2° = 1.875

ii. Denormalized numbers

The sign indicates the sign of the value, either O (positive) or 1 (negative). The exponent is
0 and the actual exponent is-1022. The mantissa is between 1 and 2%-1, and the actual
mantissaisinterpreted as the value of which 2”nd bit is 0 and this bit is followed by the
decimal point. Values of denormalized numbers are as follows:

(_l)sgn X 2—1022 X ((mant'Sa) X 2-52)

Example:

63 62 5251 0
’1‘00000000000‘111000OOOOOOOOOOOOOO0OOOOOO0OOOOOOOOOOOOOOOOOOOOOOOO

Sign: -

Exponent: -1022

Mantissa: 0.111, = 0.875, where , indicates binary
Vaue: 0.875 x 27

Rev. 1.0, 08/00, page 229 of 890
HITACHI

iii. Zero
Thesignis 0 (positive) or 1 (negative), indicating +0.0 or —0.0, respectively. The exponent
and mantissa are both 0.

+0.0 and —-0.0 are both the value 0.0. See section 10.1.3 (4), Floating-Point Operation
Specifications, for the functional differences deriving from the sign used with zero.

iv. Infinity
Thesignis O (positive) or 1 (negative), indicating +co or —co, respectively. The exponent is
2047 (2"-1).
The mantissaisO.
v. Not-a-number
The exponent is 2047 (2"-1).
The mantissais avaue other than 0.

Note: When the CPU is SH-2E, SH-3E, or SH-4, not-a-number is called a gNaN when the MSB
of the mantissais 0, or sNaN when the MSB of the mantissais 1. There are no
specifications regarding the values of other mantissafields or the sign.

Rev. 1.0, 08/00, page 230 of 890
HITACHI

(4) Floating-Point Operation Specifications
This section describes the specifications for arithmetic operations on floating-point numbersin
C/C++, and for converting between the decimal representation of floating-point numbers and
their internal representation during compilation and in library processing.
(a) Specificationsfor arithmetic operations

Rounding of results

When the result of arithmetic operations on floating-point numbers exceeds the number
of valid limit in the mantissain internal representation, the result is rounded according
to the following rules:

a

Theresult is rounded toward the closer of the two internal representations of the
approximating floating-point numbers.

When the result is exactly between the two approximating floating-point numbers, it
isrounded to the floating-point number of which the last digit of the mantissaisO.
When the CPU is SH-2E or SH-3E, the portion that exceeds the valid digitsis
truncated.

When the CPU is SH-4, and the round = nearest option is specified, the portion that
exceeds the valid digitsis rounded to the nearest value. When the round = zero
option is specified, the portion that exceeds the valid digits is rounded toward zero.

. Processing of overflows, underflows, and illegal operations

The following is performed in the event of an overflow, underflow, or illegal operation.

a

d.

In the case of an overflow, the result is a positive or negative infinity, depending on
the sign of the resullt.

In the case of an underflow, the result is a positive or negative zero, depending on
the sign of the resullt.

In the case of an illegal operation, in which infinity values of the opposite sign have
been added, in which an infinity has been subtracted from another infinity of the
same sign, in which zero has been multiplied by infinity, in which zero is divided by
zero, or in which infinity is divided by infinity, the result is a not-a-number.
If an overflow results from converting a floating point number to an integer, the
result is not guaranteed.

Note: Operations are performed on constant expressions during compilation. If an

overflow, underflow, or illegal operation occurs, awarning level error message
is output.

Rev. 1.0, 08/00, page 231 of 890
HITACHI

iii. Notes on operations on specia values

The following are notes on operations on special values (zero, infinity, and not-a-
number).

a

b.

C.

The sum of a positive zero plus negative zero is a positive zero.
The difference between two zeros of the same sign is a positive zero.

The result of operations that include not-a-number in one or both operandsis always
anot-a-number.

In comparative operations, positive zeros and negative zeros are processed as equal.

e. Theresult of comparative operations or equivalence operations where either one or

both operands are not-a-number istrue for "!=" and falsein all other cases.

(b) Conversion between decimal and internal representation
This section describes the specifications for conversions between floating-point numbersin
a source program and internal representation, and conversion by library functions between
the decimal representation of floating-point numbersin ASCII strings and their internal
representation.
i. When converting from decimal to internal representation, the decimal valueisfirst
converted to its normalized form. The normalized form of a decimal valueis
+M x 10™", where M and N are in the following range:

a

Normalized form of float types

0<M<10-1

0<N<99

Normalized form of double and long double types

0<M<10"-1

0<N <999

If adecimal value cannot be converted to its normalized form, an overflow or
underflow occurs. If the decimal representation contains more valid numerals than
the normalized form, the trailing digits are truncated. In this case, awarning level
error message is output when compiling and the corresponding error number is set
in errno when the program is executed. For conversion to its normalized form, the
origina decimal representation must, in the form of ASCII strings, be within 511
characters. If not, an error occurs when compiling and the corresponding error
number is set in errno when the program is executed. When converting from
internal representation to decimal, the value isfirst converted to the normalized
decimal form, then converted to ASCII strings according to the specified format.

Rev. 1.0, 08/00, page 232 of 890

HITACHI

ii. Conversion between normalized form of decimals and internal representation

When converting from the normalized form of decimals to internal representation, and

vice versa, errors cannot be avoided when the exponent is large or small. The following

describes the range within which conversion is accurate, and the error limits when the

values are outside that range.

a. Rangefor accurate conversion
The rounding shown in () i, "Rounding of results" is correctly applied for floating-
point numbers within the ranges shown below. No overflow or underflow will occur
within these ranges.
(1) floattypess 0s M <10°-1,0<N <13
(2) double and long double types; 0 < M < 10"-1,0< N < 27

b. Error limits
The difference between the error that occurs when converting values that do not fall
in the ranges shown in a. above and the error that occurs when rounding is correctly
performed does not exceed 0.47 times the smallest digit of the valid numerals. If the
value exceeds the ranges shown in a. above, an overflow or underflow may occur
during conversion. In this case, awarning level error message is output during
compilation, and the corresponding error number is set in errno when the program
is executed.

Rev. 1.0, 08/00, page 233 of 890
HITACHI

10.1.4 Operator Evaluation Order

If an expression includes multiple operators, the evaluation order of these operatorsis determined
according to the precedence and the associativity indicated by right or left.

Table 10.19 shows each operator precedence and associativity.

Table 10.19 Operator Precedence and Associativity

Precedence Operators

Associativity Applicable Expression

1 ++ -- (postfix) () []->. Left Postfix expression

2 ++ -- (prefix) | ~ + - * & sizeof Right Monomial expression

3 (Type name) Right Cast expression

4 *[% Left Multiplicative expression
5 + - Left Additive expression

6 << >> Left Shift expression

7 <<=>>= Left Relational expression

8 === Left Equality expression

9 & Left Bitwise AND expression
10 n Left Bitwise XOR expression
11 | Left Bitwise OR expression
12 && Left Logical AND operation
13 Il Left Logical OR expression
14 ? Left Conditional expression
15 S 4= ==*= [Y= <<=>>= &= |= = Right Assignment expression
16 Left Comma expression

Rev. 1.0, 08/00, page 234 of 890

HITACHI

10.2 Extended Specifications

The compiler supports the following two kinds of extended specifications:
e #ipragma extension specifiers

* Intrinsic functions

10.21 #pragma Extension

Tables 10.20 to 10.22 list #pragma extension specifiers.

Table 10.20 Extended Specifications Relating to Memory Allocation

#pragma Extension Specifier Function

#pragma section Switches sections

#pragma abs16 Treats a variable or function address as two-byte data

Table 10.21 Extended Specifications Relating to Functions

#pragma Extension Specifier Function

#pragma interrupt Creates an interrupt function

#pragma inline Performs inline expansion of functions

#pragma inline_asm Expands an assembly-language description function.
#pragma regsave, Generates or does not generate save and restore code at the
#pragma noregsave, start and end of functions

#pragma noregalloc

Table 10.22 Other Extended Specifications

#pragma Extension Specifier Function

#pragma global_register Allocates global variables to registers

#pragma gbr_base, Specifies GBR base variables
#pragma gbr_basel

For some of the extended functions above, data members and function members can be specified.
Specification format is (class name::member name). For the specifiable member types, see the
format of each function.

Rev. 1.0, 08/00, page 235 of 890
HITACHI

(1) Extended Specifications Related to Memory Allocation
#pragma section
Description Format: #pragma section [{ <name> | <numeric value>}]

Description: Switches the section to be output by the compiler.
Table 10.23 lists the default section names and section names after switching
sections.

Table 10.23 Section Switching and Section Name

Default Section After Switching

Target Area Specification Name Section
Program area #pragma section P’ P<xx>
Constant area XX> c C<xx>
Initialized data area D’ D<xx>
Non-initialized data area B’ B<xx>

Note: The default section name can be modified by the section option.
If <name> and <number> are not specified, the default section names will be used.

Example: #pragma section abc
int a; /* a is assigned to section Babc */
const int c=1; /* c is assigned to section Cabc */
void f(void) /* T is assigned to section Pabc */
{
a=c;
}
#pragma section
int b; /* b is assigned to section B */
void g(void) /* g is assigned to section P */
{
b=c;
}
Remarks: 1. #pragma section can be declared only outside the function definition.

2. Upto 64 section names can be declared for each of #pragma section in
onefile.

Rev. 1.0, 08/00, page 236 of 890
HITACHI

#pragma absl6
Description Format: #pragmaabsl6 (<identifier>[,...])

Description: A variable allocated at addresses H'00000000 to H'00007FFF or H'FFFF8000
to H'FFFFFFFF specified using an identifier or an address of afunction is
treated astwo-byte data. Then, program size can be reduced.

For the identifier, variables, global functions, static data members, and
function members can be specified.

Example: #pragma abs16(x, y, Zz)
extern int x();
int y;
long z;
void f(void){
z = xO+t y;
¥

Remarks: 1. Directive #pragma absl6 cannot be used to specify an automatic object
or non-static data member.
2. Variables declared using directive #pragma absl6 must be allocated in
the address range from H'00000000 to H'00007FFF or from
H'FFFF8000 to H'FFFFFFFF.

Rev. 1.0, 08/00, page 237 of 890
HITACHI

(2) Extended Specifications Related to Functions
#pragma interrupt
Description Format: #pragmainterrupt (<function name>[(interrupt specification)][,...])

Description: Declares an interrupt function.
Global functions and static function members can be specified for the
function name. Table 10.24 lists interrupt specifications.

Table 10.24 Interrupt Specifications

Item Form Options Specifications
Stack switching sp= The address of a new stack is specified
with a variable or a constant.
{<variable> <variable>: Variable (pointer type)
|&<variable> &<variable>: Variable (object type)
address
|<constant> <constant>: Constant value
}
Trap-instruction tn= <constant> The interrupt function exits with the
return TRAPA instruction.

<constant>: Constant value
(trap vector number)

An interrupt function will guarantee register values before and after
processing (all registers used by the function are pushed onto and popped
from the stack when entering and exiting the function). The RTE instruction
directs the function to return. However, if the trap-instruction return is
specified, the TRAPA instruction is executed at the end of the function. An
interrupt function with no specificationsis processed in the usual procedure.
The stack switching specification and the trap-instruction return specification
can be specified together.

Rev. 1.0, 08/00, page 238 of 890
HITACHI

Example:

#pragma interrupt(f(sp = ptr, tn = 10),A :9)
extern int STK[100];

class A{

publi c:

static void g();
}s
int *ptr = STK +100;

Explanation:

@
(b)

(©

Stack switching specification: ptr is set asthe stack pointer used by
interrupt function f.

Trap-instruction return specification: After the interrupt function has
completed its processing, TRAPA #H'10 is executed. The SP at the
beginning of trap exception processing is shown in figure 10.2. After
the previous PC (program counter) and SR (status register) are popped
from the stack by the RTE instruction in the trap routine, control is
returned from the interrupt function.

The function member that can be specified in C++ program is the static
function member. In the example, static function member g of class A
is specified as an interrupt function. Note that nonstatic function
members cannot be specified.

Rev. 1.0, 08/00, page 239 of 890
HITACHI

Immediately after interrupt During interrupt function Just after the interrupt function

processing has completed processing
(Immediately before the TRAPA
Lower address instruction is issued)
STKI[O] STKI0]
STK[99] STK[99
ptr — sp — [59]

Upper address ¢

Lower address l
Sp Sp _>

Previous PC Previous PC Previous PC
Previous SR Previous SR Previous SR

Upper address ¢

Figure 10.2 Stack Processing by an Interrupt Function

Remarks: 1. Theinterrupt operation in the SH-3, SH-3E, and SH-4 is different from
that in the SH-1, SH-2, and SH-2E, and requires interrupt handlers.

2. Functionsthat can be specified for an interrupt function definition are the
global function (in C/C++ program) and static function member (in C++
program). A global function is assumed to be of the extern storage class
even if static is specified.

The function must return only void data. The return statement cannot
have areturn value. If attempted, an error is output.

Example:

#pragma interrupt(fl(sp=100),¥f2)

void FLO{ .-} it (a)
int R20{---F i (b)

Description: (@) isacorrect declaration.
(b) returnstype that isnot void, thus (b) is an incorrect
declaration. An error will occur.

Rev. 1.0, 08/00, page 240 of 890
HITACHI

田神 憲一
.
.
.
.

田神 憲一

田神 憲一
.
.
.
.

3. A function declared as an interrupt function cannot be called within the
program. If attempted, an error will occur. However, if the functionis
called within a program which does not have a declaration of the interrupt
function, an error does not occur but correct program execution is not
guaranteed.

Example 1 (An interrupt function is declared):
#pragma interrupt(fl)

void f10O{...}

int 20{ f10:} ----coialon @

Description: Function f1 cannot be called in the program becauseiit is
declared as an interrupt function. An error occurs at (a).

Example 2 (An interrupt function is not declared):
int f1();
int .20{ f10:} - -ciio.- ®

Description: Because function f1 is not declared as an interrupt function,
an object is generated as a non-interrupt function, int f1();.
If function f1 is declared as an interrupt function in another
file, correct program execution cannot be guaranteed.

Rev. 1.0, 08/00, page 241 of 890
HITACHI

#pragmainline
Description Format: #pragmainline (<function name>[,...])

Description: Declares a function for which inline expansion is performed.
A name of aglobal function or a static function member can be specified asa
function name.
A function specified by #pragma inline or afunction with specifier inline
(C++) will be expanded where the function is called.

Example: Source Program
#pragma inline (func)
static int func (int a, int b)
{
return (a+b)/2;
¥
int x;
main
{
x = func(10,20);
}

Inline Expansion Image
int x;
main()
{
int func_result;
{
int a1l =10, b_1 = 20;
func_result = (a_1+b_1)/2;
b
x = func_result;

}

Rev. 1.0, 08/00, page 242 of 890
HITACHI

Remarks: 1. A function will not be expanded in the following cases:
O afunction definition exists before the #pragma inline specification
O afunction has variable parameters
0 aparameter addressisreferenced in afunction
0 an address of afunction to be expanded is used to call the function

2. Specify #pragma inline before defining a function.

3. When aprogram file includes the definition of afunction to be inlined, be
sure to specify static before the function declaration because an external
definition is generated for a function specified by #pragma inline. If
static is specified, an external definition will not be created. External
definition will not be created for functions for which inline (C++) is
specified.

Rev. 1.0, 08/00, page 243 of 890
HITACHI

#pragma inline_asm

Description Format: #pragmainline_asm (<function name>[(size=numeric value)][,...])

Description:

Example:

Performsinline expansion for the functions written in assembly language
declared by #pragma inline_asm.

Only aglobal function can be specified as a function name. Function
members cannot be specified.

Parameters of afunction that is written in an assembly language are
referenced from an inline_asm function because they are stacked or stored in
registersin the same way as general function calls. Return values of an
inline function written in an assembly language should be set in RO. When
the cpu is SH-2E, SH-3E, or SH-4, return values of single-precision floating
point type should be set in FRO. When the cpu is SH-4, return values of
double-precision floating point type should be set in DRO. A different
register may be used depending on the combination of options. For details,
see table 9.7.

Length of an inline function written in an assembly language can be specified
by (size=numeric value).

Source program
#pragma inline_asm(rotl)
static int rotl (int a)
{
ROTL R4
MOV R4,RO
3
int x;
main()
{
X = 0x55555555;
X = rotl(X);

¥

Rev. 1.0, 08/00, page 244 of 890

HITACHI

Output result (partial)

_main ;function main
;frame size = 4
MOV.L R14,@-R15

MOV.L L220+2,R14 ;X
MOV.L L220+6,R3 ;H"55555555
MOV.L R3,@R14
MOV R3,R4
BRA L219
NOP
L220:
.RES.W 1
_.DATA.L X
.DATA.L H"55555555
L219:
ROTL R4
MOV R4,RO
.ALIGN 4
MOV.L RO,@R14
RTS
MOV .L @R15+,R14
.SECTION B,DATA,ALIGN=4
_X: ;static: X
.RES.L 1
-END

Rev. 1.0, 08/00, page 245 of 890
HITACHI

Remarks: 1. Specify #pragmainline_asm before the definition of afunction.

2. When a source program file includes an inline function description, be
sure to specify static before the function declaration because an external
definition is generated for afunction specified by #pragma inline_asm.
If static is specified, an externa definition will not be created.

3. Besureto uselocal labelsin afunction written in an assembly language.

4. When registers R8 to R14 are used in afunction written in an assembly
language, the contents of these registers must be saved and restored at
the start and end of the function. Also, when registers FR12 to FR15
(in SH-2E, SH-3E, or SH-4 cpu) are used, or when registers DR12
to DR14 (with the SH-4 cpu) are used, the contents of these registers
must be saved and restored at the start and end of the inline function
written in the assembly language.

5. Donot use RTS at the end of a function written in an assembly language.

6. When #pragma inline_asm is used, be sure to compile programs using
the code=asmcode option to generate assembly code.

7. When specifying a number by (size=numeric value), specify a number
larger than the actual object size. If avalue smaller than the actual object
sizeis specified, correct operation will not be guaranteed. If afloating
point or a numeric value lessthan 0 is specified, an error will occur.

8. Even when aregister specified by the #pragma global_register function
is used, the contents of this register must be saved and restored at the start
and end of the inline function written in an assembly language.

9. Only aglobal function can be specified as a function name. Function
members cannot be specified.

10. Do not use a statement that generates aliteral pool. (MOV.L #100000,R0
etc.)

Rev. 1.0, 08/00, page 246 of 890
HITACHI

#pragma regsave
#pragma nor egsave
#pragma noregalloc

Description Format: #pragmaregsave (<function name>[,...])
#pragma noregsave (<function name>[,...])
#pragma noregalloc (<function name>[,...])

Description: 1

Global functions and function members can be specified as the

function name.

Functions specified by #pragma regsave save and restore the contents

of callee-save registers (see table 9.5) at the start and end of a

function, respectively. Inside the function specified by #pragma

regsave, callee-save registers (R8 to R14, and FR12 to FR15 if FPU

exists) will not carry avalue over achild function call.

Functions specified by #pragma nor egsave do not save or restore the

contents of callee-save registers at the start and end of afunction.

Functions specified by #pragma nor egalloc do not save or restore the

contents of callee-save registers at the start and end of afunction.

Inside the function specified by #pragma regsave, callee-save registers

(R8to R14, and FR12 to FR15 if FPU exists) will not carry avalue over

achild function call.

#pragma regsave and #pragma nor egalloc can specify the same

function at the same time. |In this case, the contents of registers R8 to

R14 (and FR12 to FR15 if FPU exists) are saved and restored at the

start and end of afunction if they are used. Inside the function

specified by #pragma regsave, callee-save registers (R8 to R14, and

FR12 to FR15 if FPU exists) will not carry avalue over a child function

cal.

Functions specified by #pragma nor egsave can be used in the

following conditions:

a. A function isthe first function activated and is not called from any

other function.

b. A function is called from afunction that is specified by #pragma
regsave.

c. A function is called from afunction that is specified by #pragma
regsave via #pragma nor egalloc.

Rev. 1.0, 08/00, page 247 of 890
HITACHI

Example: #pragma noregsave(f, A::j)
#pragma noregalloc(g)
#pragma regsave(h)

class A{
public:
static void jO;
}:
void fQ);
void gQ;
void hQ);
void hQ
{
g);
TC): /* Function f declared with #pragma
/* noregsave is directly called by h
} /* declared with #pragma regsave
void g()
{
TC): /* Functions f and A::j declared with
/* #pragma noregsave are indirectly called
/* by h via g declared with #pragma
/* noregalloc
Az Qs
}
void ()
{
}
Remarks: The result of acall of afunction declared with #pragma nor egsave is not

guaranteed if it is called in away other than that shown above.

Rev. 1.0, 08/00, page 248 of 890

HITACHI

*/
*/
*/

*/

*/
*/

(3) Other Extended Specifications

#pragma global_register

Description Format: #pragmadglobal_register (<variable name>=<register name>[,...])

Description:

Example:

Remarks:

Allocates the global variable specified in <variable name> to the register
specified in <register name>.

Global variables and static data members can be specified as the variable
name.

#pragma global_register(a = R8,A::b = R9)
class A(

public:

static int b;

E

int a;

void g

{
= A:z:b;

[N

Thisfunction is used for asimple or pointer type variable in the global
variable. In a CPU other than SH-4, a double type variable can be
specified only when double=float option is specified.
2. Only useregisters R8 to R14, FR12 to FR15 (in SH-2E, SH-3E, or
SH-4 cpu) and DR12 to DR14 (in SH-4 cpu).
3. Theinitia value cannot be set. In addition, the address of the specified
variable cannot be referenced.
4. The reference of the specified variable from outside of the fileis not
guaranteed.
5. Static data members can be specified. Nonstatic data members cannot
be specified.
O Typeof variablesthat can be set in FR12 to FR15:
For SH-2E and SH-3E cpu
float type variables
double type variables (when double=float option is specified)
For SH-4 cpu
float type variables (when fpu=double option is not specified)
double type variables (when fpu=single option is specified)
O Typeof variablesthat can be setin DR12 to DR14
For SH-4 cpu
float type variables (when fpu=double option is specified)
double type variables (when fpu=single option is not specified)

Rev. 1.0, 08/00, page 249 of 890
HITACHI

#pragma gbr_base
#pragma gbr_basel

Description Format: #pragmagbr_base (variable name],...])
#pragmagbr_basel (variable name],...])

Description: Specifies variables to be accessed using a GBR register and an offset value.
For the variable name, variables and static data members can be specified.

The variable specified by #pragma gbr_base is assigned to section $G0, and
the variable specified by #pragma gbr_basel is assigned to section $G1.

The directive #pragma gbr_base specifiesthat the variableislocated in an
offset of 0 to 127 bytes from the address specified by the GBR register. The
directive #pragma gbr_basel specifies that the variable islocated in an
offset of 128 or more bytes from the address specified by the GBR register,
that is, avariableisin arange beyond the range specified by #pragma
gbr_base. An offset value is 255 bytes at maximum for a char or unsigned
char type, 510 bytes at maximum for a short or unsigned short, and 1020
bytes at maximum for an int, unsigned, long, unsigned long, float, or double
type. Based on the above specification, the compiler generates an object
program in a GBR relative addressing mode that is optimized according to
variable reference and settings.

The compiler also generates an optimized bit instruction in the GBR indirect
addressing to char or unsigned char type datain the $GO section.

Remarks: 1. If thetotal datasize after the linker gathers sections $G0 exceeds 128
bytes, the correct operation will not be guaranteed. In addition, if there
is data that has an offset value exceeding those specified above for
#pragma gbr_basel in section $G1, correct operation will not be
guaranteed.

2. Section $G1 must be allocated immediately after 128 bytes of section
$GOin linkage.

3. Inusing these #pragma's, be sure to set the start address of section $GO
in the GBR register at the start of program execution.

4. Static data members can be specified, but non-static data members
cannot be specified.

Rev. 1.0, 08/00, page 250 of 890
HITACHI

10.2.2 Intrinsic Functions

The compiler provides functions that cannot be written in C/C++, asintrinsic functions. The
following functions can be specified as intrinsic functions.

» Setting and referencing the status register

» Setting and referencing the vector base register

» 1/O functions using the global base register
» System instructions which do not compete with register sourcesin C/C++ language
» Multimediainstructions using the floating point unit and setting and referencing control

registers

Intrinsic functions can be written in the same call format as regular functions.

Table 10.25 lists intrinsic functions.

Table 10.25 Intrinsic Functions

Item

Specifications

Function

Status register
(SR)

void set_cr(int cr)

Writes to the status register

int get_cr(void)

Reads the status register

void set_imask(int mask)

Writes to the interrupt mask bit

int get_imask(void)

Reads the interrupt mask bit

Vector base void set_vbr(void *base) Writes to VBR
register (VBR) void *get_vbr(void) Reads VBR
Global base void set_gbr(void *base) Writes to GBR
register (GBR) void *get_gbr(void) Reads GBR

unsigned char
gbr_read_byte(int offset)

Reads a GBR-based byte

unsigned short
gbr_read_word(int offset)

Reads a GBR-based word

unsigned short
gbr_read_long(int offset)

Reads a GBR-based longword

void gbr_write_byte
(int offset, unsigned char data)

Writes a GBR-based byte

void gbr_write_word
(int offset, unsigned short data)

Writes a GBR-based word

HITACHI

Rev. 1.0, 08/00, page 251 of 890

Table 10.25 Intrinsic Functions (cont)

Item Specification Function

Global base void gbr_write_long Writes a GBR-based longword

register (GBR) (int offset, unsigned long data)

(cont)
void gbr_and_byte ANDs a GBR-based byte
(int offset, unsigned char mask)
void gbr_or_byte ORs a GBR-based byte
(int offset, unsigned char mask)
void gbr_xor_byte XORs a GBR-based byte
(int offset, unsigned char mask)
int gbr_tst_byte Tests a GBR-based byte
(int offset, unsigned char mask)

Special instruc- void sleep(void) SLEEP instruction

tions int tas(char *addr) TAS instruction
int trapa(int trap_no) TRAPA instruction
int trapa_svc OS system call

(int trap_no, int code, typel paral, type2
para2, type3 para3, type4 parad)

void prefetch (void *p) PREF instruction

void trace(long v) TRACE instruction
Multiply and int macw MAC.W instruction
accumulate (short *ptrl, short *ptr2, unsigned int
operation count)

int macwil

(short *ptrl, short *ptr2, unsigned int
count, unsigned int mask)

int macl MAC.L instruction
(int *ptrl, int *ptr2, unsigned int count)

int macll

(int *ptrl, int*ptr2, unsigned int count,

unsigned int mask)

Floating point void set_fpscr(int cr) Sets FPSCR.
unit

int get_fpscr() Refers to FPSCR.

Rev. 1.0, 08/00, page 252 of 890
HITACHI

Table 10.25 Intrinsic Functions (cont)

Item Specification Function
Single- float fipr(float vect1[4], float vect2[4]) FIPR instruction
precision
floating point void ftrv(float vec1[4],float vec2[4]) FTRYV instruction
vector
operation
void ftrvadd(Transforms 4-dimensional vector by
float vec1[4] 4x4 matrix, and adds the result to 4-
' dimensional vector
float vec2[4],
float vec3[4]
)
void ftrvsub(Transforms 4-dimensional vector by
float vec1[4] 4x4 matrix, and subtracts
' 4-dimensional vector from the result
float vec2[4],
float vec3[4]
)
void add4(Performs addition of 4-dimension
float vec1[4], vectors
float vec2[4],
float vec3[4]
)
void sub4(Performs subtraction of 4-dimension
float vec1[4], vectors
float vec2[4],
float vec3[4]
)
void mtrx4mul(Performs multiplication of 4x4 matrices

float mat1[4][4],
float mat2[4][4]

Rev. 1.0, 08/00, page 253 of 890
HITACHI

Table 10.25 Intrinsic Functions (cont)

Item Specification Function
Single- void mtrx4muladd(Performs multiplication and addition of
precision float mat1[4][4], 4x4 matrices

floating point
vector

float mat2[4][4],

operation float mat3[4][4]
(cont))
void mtrx4mulsub(Performs multiplication and subtraction
float matL[4][4], of 4x4 matrices
float mat2[4][4],
float mat3[4][4]
)
Access to void Id_ext(Loads mat (4x4 matrix) to extension
extension float mat[4][4] register.
register
)
void st_ext(Stores contents of extension register
float mat[4][4] to mat (4x4 matrix).
)

<machine.h>, <umachine.h>, or <smachine.h> must be specified when intrinsic functions are

used.

<machine.h> is divided into <umachine.h> and <smachine.h> as shown in table 10.26 to
correspond to the SH-3, SH-3E, SH-4 execution mode:

Table 10.26 Dividing <machine.h>

Include File

Contents

<machine.h>

Overall intrinsic functions

<smachine.h>

Intrinsic functions that can be used in the privileged mode

<umachine.h>

Intrinsic functions other than those in <smachine.h>

Rev. 1.0, 08/00

, page 254 of 890

HITACHI

void set_cr(int cr)

Description: Sets cr (32 hits) to the status register (SR).
Header: <machine.h> or <smachine.h>
Parameters: cr Setting value
Example: #include <machine.h>
void main(void)
{
set_cr(0x60000000);/* Supervisor,RBank=1,BL=0, Imask0 */
}
int get_cr(void)
Description: Reads the status register (SR).
Header: <machine.h> or <smachine.h>
Return value: Status register value
Example: #include <machine.h>
void main(void)
{
set_cr(get_cr() | 0x1000000); /* Set BL bit */
}

void set_imask(int mask)

Description: Sets mask (4 bits) to the interrupt mask bits (4 bits).
Header: <machine.h> or <smachine.h>
Parameters: mask Setting value (4 bits)
Example: #include <machine.h>

void main(void)

{

set_imask(15);
}

Rev. 1.0, 08/00, page 255 of 890
HITACHI

int get_imask(void)

Description: Reads the interrupt mask bit (4 hits).
Header: <machine.h> or <smachine.h>
Return value: Value of the interrupt mask bit
Example: #include <machine.h>
void main(void)
{
int mask;
mask = get_imask();
}

void set_vbr(void base)

Description: Sets base (32 bits) to the vector base register (VBR).
Header: <machine.h> or <smachine.h>

Parameters: base Setting value

Example: #include <machine.h>

#define VBR 0x0000FCO0
void main(void)

{
set_vbr((void *)VBR);
}
void *get_vbr (void)
Description: Reads the vector base register (VBR).
Header: <machine.h> or <smachine.h>
Return value: Value of the vector base register
Example: #include <machine.h>
void main(void)
{
void *vbr;
vbr = get_vbr(Q);
}

Rev. 1.0, 08/00, page 256 of 890
HITACHI

void set_gbr(void *base)

Description: Sets base (32 bits) to the global base register (GBR).
Header: <machine.h> or <umachine.h>

Parameters: base Setting value

Example: #include <machine.h>

#define I10BASE OxO05fffecO
void main(void)

{
set_gbr((void *)I0BASE);

}

Remarks: AsGBR isacontrol register whose contents are not guaranteed by all functions
in this compiler, take care when changing GBR settings.

void *get_gbr (void)

Description: Reads the global base register (GBR).
Header: <machine.h> or <umachine.h>
Return value: Value of the vector base register
Example: #include <machine.h>

void main(void)

{

void *gbr;
gbr = get_gbr(Q);

Rev. 1.0, 08/00, page 257 of 890
HITACHI

unsigned char gbr_read_byte (int offset)

Description:

Header:
Return value:
Parameter:

Example:

Remarks:

Reads a byte (8 bits) at the address indicated by adding GBR and the offset
specified.

<machine.h> or <umachine.h>
Byte data (8 bits) reference value
offset Offset address

#include <machine.h>
#define BDATA O
void main(void)
{
if(gbr_read_byte(BDATA) !=0)

}

1. offsets must be constants.
2. The specification range for offsetsis +255 bytes.

unsigned short gbr_read_word (int offset)

Description:

Header:
Return value:
Parameter:

Example:

Remarks:

Reads aword (16 hits) at the address indicated by adding GBR and the offset
specified.

<machine.h> or <umachine.h>
Word data (16 bits) reference value
offset Offset address

#include <machine.h>
#define WDATA O
void main(void)
{
if(gbr_read_word(WDATA) !=0)

}

1. offsets must be constants.
2. The specification range for offsetsis +510 bytes.

Rev. 1.0, 08/00, page 258 of 890

HITACHI

unsigned long gbr_read long (int offset)

Description: Reads alongword (32 bits) at the address indicated by adding GBR and the
offset specified.

Header: <machine.h> or <umachine.h>

Return value: Long-word data (32 bits) reference value

Parameter: offset Offset address

Example: #include <machine.h>

#define LDATA O
void main(void)

{
if(gbr_read_long(LDATA) !=0)

}

Remarks: 1. offsets must be constants.
2. The specification range for offsetsis +1020 bytes.

void gbr_write byte(int offset, unsigned char data)

Description: Sets a byte (8 bits) at the address indicated by adding GBR and the offset
specified.

Header: <machine.h> or <umachine.h>

Parameter: offset Offset address
data Setting value (8 bits)

Example: #include <machine.h>

#define BDATA O
void main(void)
{
gbr_write_byte(BDATA,0);
}

Remarks: 1. offsets must be constants.
2. The specification range for offsetsis +255 bytes.

Rev. 1.0, 08/00, page 259 of 890
HITACHI

void gbr_write word(int offset, unsigned short data)

Description:

Header:

Parameter:

Example:

Remarks:

Setsaword (16 bits) at the address indicated by adding GBR and the offset
specified.

<machine.h> or <umachine.h>

offset Offset address
data Setting value (16 bits)

#include <machine.h>
#define WDATA O
void main(void)
{

gbr_write_word(WDATA,O0);
}

1. offset must be constants.
2. The specification range for offsetsis +510 bytes.

void gbr_write long(int offset, unsigned long data)

Description:

Header:

Parameter:

Example:

Remarks:

Sets alongword (32 bits) at the address indicated by adding GBR and the
offset specified.

<machine.h> or <umachine.h>

offset Offset address
data Setting value (32 bits)

#include <machine.h>
#define LDATA O
void main(void)
{

gbr_write_long(LDATA,0);
}

1. offsets must be constants.
2. The specification range for offsetsis +1020 bytes.

Rev. 1.0, 08/00, page 260 of 890

HITACHI

void gbr_and_byte(int offset, unsigned char mask)

Description:

Header:

Parameter:

Example:

Remarks:

ANDs amask and a byte (8 bits) at the address indicated by adding GBR and
the offset specified, and stores the result to the address indicated by adding
GBR and the specified offset.

<machine.h> or <umachine.h>

offset Offset address
mask data (8 bits)

#include <machine.h>
#define BDATA O
void main(void)
{

gbr_and_byte(BDATA,0x01);
}

1. offsets must be constants.
The specification range for offsetsis +255 bytes.
The specification range for mask is 0 to +255.

w N

void gbr_or_byte(int offset, unsigned char mask)

Description:

Header:

Parameter:

Example:

Remarks:

ORs amask and a byte (8 bits) at the address indicated by adding GBR and
the offset specified, and stores the result to the address indicated by adding
GBR and the specified offset.

<machine.h> or <umachine.h>

offset Offset address
mask Data (8 bits)

#include <machine.h>
#define BDATA O
void main(void)
{

gbr_or_byte(BDATA,0x01);
}

1. offsets must be constants.
The specification range for offsetsis +255 bytes.
The specification range for mask is 0 to +255.

W N

Rev. 1.0, 08/00, page 261 of 890
HITACHI

void gbr_xor_byte(int offset, unsigned char mask)

Description:

Header:

Parameter:

Example:

Remarks:

Exclusively ORs a mask and a byte (8 bits) at the address indicated by
adding GBR and the offset specified, and stores the result to the address
indicated by adding GBR and the specified offset.

<machine.h> or <umachine.h>

offset Offset address
mask Data (8 bits)

#include <machine.h>
#define BDATA O
void main(void)
{

gbr_xor_byte(BDATA,0x01);
}

1. offsets must be constants.
The specification range for offsetsis +255 bytes.
The specification range for mask is 0 to +255.

w N

int gbr_tst_byte(int offset, unsigned char mask)

Description:

Header:

Parameter:

Example:

Remarks:

ANDs amask and a byte (8 bits) at the address indicated by adding GBR and
the offset specified, checks whether the result is O or not, and setsthe T bit
according to the result of the check.

<machine.h> or <umachine.h>

offset Offset address
mask Data (8 bits)

#include <machine.h>
#define BDATA O
void main(void)
{

gbr_tst_byte(BDATA,0);
}

1. offsets must be constants.
The specification range for offsetsis +255 bytes.
The specification range for mask is 0 to +255.

w N

Rev. 1.0, 08/00, page 262 of 890

HITACHI

GBR Intrinsic Function Example:

#include <machine.h>
#define CDATALl O

#define CDATA2
#define CDATA3
#define SDATAL
#define IDATAL
#define IDATA2 12

w0 AN PR

struct{
char cdatal; /* offset O */
char cdata2; /* offset 1l */
char cdata3; /* offset 2 */
short sdatal; /* offset 4 */
int idatal; /* offset 8 */
int idata2; /* offset 12 */

}table;

void fQ;

void QO

{

set_gbr(&table); /* Sets the start address of */
: /* table to GBR. */
gbr_write_byte(CDATA2, 10);
/* Sets 10 to table.cdata2. */
gbr_write_long(IDATA2, 100);
/* Sets 100 to table.idata2. */

if(gbr_read_byte(CDATA2) != 10)

/* Reads table.cdata2. */
gbr_and_byte(CDATA2, 10);
/* ANDs 10 and table.cdata2, */
/* and sets it in table.cdata2.*/
gbr_or_byte(CDATA2, OxO0F);

/* ORs OxOF and table.cdata2, */
: /* and sets it in table.cdata2.*/
sleep(); /* Expanded to the sleep */
/* instruction */

Rev. 1.0, 08/00, page 263 of 890
HITACHI

Effective Use of GBR Intrinsic Functions:
1. Allocate frequently accessed object to memory and set the start address of the object to GBR.

2. Bytedatathat frequently useslogical operations should be declared within 128 bytes of the
start address of the structure.
Asaresult, the load instruction of start address for accessing a structure can be reduced and
load/store instructions necessary for performing logical operation can be reduced.

void sleep(void)
Description: Expanded to SLEEP instruction, which makes the CPU enter the low-power
consumption mode
Header: <machine.h> or <smachine.h>
Example: #include <machine.h>
void main(void)
{
sleepQ);
}
int tas(char *addr)
Description: Expanded to the TAS.B @Rn instruction.
Header: <machine.h> or <umachine.h>
Parameters: addr Address specified in the TAS instruction
Example: #include <machine.h>
char a;
void main(void)
{
tas(&a);
}

Rev. 1.0, 08/00, page 264 of 890
HITACHI

int trapa(int trap_no)

Description:
Header:
Parameters:

Example:

Expanded to TRAPA #trap_no.
<machine.h> or <umachine.h>
trap_no Trap number

#include <machine.h>
void main(void)
{
trapa(0);
}

int trapa_svc(int trap_no, typel paral, type2 para2, type3 par a3, typed parad)

Description:

Header:

Parameters:

Example:

Enables executing HI 7000 and other OS system calls. When trapa_svc is
executed, code is specified in RO, and paral to parad in R4 to R7,
respectively.

Then, TRAPA #trap_no is executed.

<machine.h> or <umachine.h>

trap_no Trap number
code Function code
paral to parad Parameters (0 to 4 variables)

Typestypel to typed are integer type or pointer type.

#include <machine.h>
#define SIG_SEM Oxffc8
void main(void)
{
trapa_svc(63, SIG_SEM, 0x05);
}

Rev. 1.0, 08/00, page 265 of 890
HITACHI

void prefetch(void *p)

Description:

Header:
Parameters:

Example:

Remarks:

void trace(long v)
Description:
Header:
Parameters:

Example:

Remarks:

An areaindicated by the pointer (16-byte data from (int)p& Oxfffffff0) is
written to the cache memory.

<machine.h> or <umachine.h>
p Prefetch address

#include <machine.h>
char a[1200];
void main(void)
{
int *pa = a;
prefetch(pa);
}

Thisfunction is valid only when the cpu=sh3|sh3e|sh4 option is specified.
This function does not affect the logical operation of the program.

Expanded to the TRACE instruction.
<machine.h> or <umachine.h>
v Output variable

#include <machine.h>
void main(void)
{

long v;

trace(v);

}

Thisfunction is valid only when the cpu=sh4 option is specified.

Rev. 1.0, 08/00, page 266 of 890

HITACHI

int macw(short *ptr 1,short*ptr2,unsigned int count)
int macwl(short *ptr 1,short*ptr2,unsigned int count,unsigned int mask)

Description: Expanded to the multiply-and-accumulate instruction, MAC.W that
multiplies and accumulates contents of two data tables.

Header: <machine.h> or <umachine.h>

Return value: Result of the MAC operation

Parameters: ptrl Start address of data to be multiplied or accumulated

ptr2 Start address of datato be multiplied or accumulated
count Number of timesthe operation is performed
mask Address mask that corresponds to the ring buffer

Example: #include <machine.h>
short tbll[]={al,a2,a3,a4};
short tbl2[]={bl,b2,b3,b4};
int resultl,result?;
void main(void)

{
resultl=macw(tbll,tbl2,3);
/* Executes al*bl + a2*b2 */
/* + a3*b3 */
result2=macwl (tbl1,tbl2,4,0xFfFFFfffb);
/* Executes al*bl + a2*b2 */
/* + a3*bl + a4*b2 */
}
Remarks: The multiply and accumulate operation intrinsic function does not check for

parameters. Therefore, keep the following in mind:
a. Tablesindicated by ptrl and ptr2 must be aligned on the boundaries of
multiples of 2 bytes.

b. Thetableindicated by ptr2in macwl must be aligned on the boundary of
amultiple of (ring buffer mask x 2).

Rev. 1.0, 08/00, page 267 of 890
HITACHI

int macl(int *ptr 1,int*ptr2,unsigned int count)
int macll(int *ptr 1,int*ptr2,unsigned int count,unsigned int mask)

Description:

Header:
Return value:

Parameters:

Example:

Remarks:

Expanded to the multiply-and-accumulate instruction, MAC.L that

multiplies and accumulates contents of two data tables.

<machine.h> or <umachine.h>

Result of the MAC operation

ptrl Start address of data to be multiplied or accumulated
ptr2 Start address of data to be multiplied or accumulated
count Number of times the operation is performed

mask Address mask that corresponds to the ring buffer

#include <machine.h>
short tbll[]={al,a2,a3,a4};
short tbl2[]={bl,b2,b3,b4};
int resultl,result?;
void main(void)
{
esultl=macl (tbll,tbl2,3);
/* Executes al*bl + a2*b2
/* + a3*b3
result2=macli1(tbll1l,tbl2,4,0xfFFFfffb);
/* Executes al*bl + a2*b2
/* + a3*bl + a4*bh2
}

1. Thisfunctionisvalid only when the cpu=sh2|sh2e|sh3|sh3e|sh4 option

is specified.

2. The multiply and accumulate operation intrinsic function does not check

parameters. Therefore, keep the following in mind:

a. Tablesindicated by ptr1 and ptr2 must be aligned on the

boundaries of multiples of 4 bytes.

*/
*/

*/
*/

b. Thetableindicated by ptr2in macll must be aligned on the

boundary of a multiple of (ring buffer mask x 2).

Rev. 1.0, 08/00, page 268 of 890

HITACHI

void set_fpscr(int cr)

Description:
Header:
Parameters:

Example:

Remarks:

int get_fpscr()
Description:
Header:
Return value:

Example:

Remarks:

Sets cr (32 bits) to the floating-point status control register FPSCR.
<machine.h> or <umachine.h>
cr Setting value (32 bits)

#include <machine.h>
void main(void)

{
set_fpscr(0);

}
Thisfunction is valid only when the cpu=sh2e|sh3e|sh4 option is specified.

Refers to the floating-point status control register FPSCR.
<machine.h> or <umachine.h>
FPSCR value

#include <machine.h>
int cr;
void main(void)
{

cr = get_fpscr();
}

Thisfunction is valid only when the cpu=sh2e|sh3e|sh4 option is specified.

Rev. 1.0, 08/00, page 269 of 890
HITACHI

float fipr(float vect1[4], float vect2[4])

Description:
Header:
Return value:

Parameters:

Example:

Remarks:

Calculates inner product of two vectors.
<machine.h> or <umachine.h>
Operation result

vectl Vector
vect2 Vector

#include <machine.h>
extern float datal[4],data2[4];
float result;
void main(void)
{
result=Fipr(datal,data?);

}

This function is valid only when the cpu = sh4 option is specified.

float ftrv(float vecl[4], float vec2[4])

Description:

Header:

Parameters:

Example:

Transforms vecl (vector) by thl (4x4 matrix), and stores the result to vec2
(vector). Note that thl needs be loaded using intrinsic function Id_ext().

<machine.h> or <umachine.h>

vecl Vector
vec2 V ector

#include <machine.h>

extern float tbl[4][4]:;

extern float datal[4],data2[4];
void main(void)

{
1d_ext(tbl);
ftrv(datal,data?);
/* As 1=0,1,2,3 the result in data2 will be as */
/* follows: data2[i]=datal[O]*tbI[O0][i]+ */
/* datal[1]*tbl[1][i] + datal[2]*tbl[2][i] */
/* datal[3]*tbI[3][i] */
}

Rev. 1.0, 08/00, page 270 of 890

HITACHI

Remarks: 1. Thisfunction isvalid only when the cpu = sh4 option is specified.

2. Intrinsic functionsd_ext() and st_ext() change the floating point register
bank bit (FR) of the floating point status control register (FPSCR) to
access the extension registers. Therefore, when using intrinsic functions
Id_ext() or st_ext() in an interrupt function, change the interrupt mask
before and after the vector operation intrinsic function as shown in the
following example.

Example
extern float mat1[4][4];
extern float vecl[4],vec2[4];
#pragma i nterrupt (intfunc)
voi d intfunc(){

I d_ext();
}
voi d nornfunc(){
i nt maskdat a=get _i mask();
set _i mask(15);
| d_ext(matl);

ftrv(vecl, vec?2);
set _i mask(nmaskdat a) ;

Rev. 1.0, 08/00, page 271 of 890
HITACHI

void ftrvadd(float vecl[4], float vec2[4], float vec3[4])

Description:

Header:

Parameters:

Example:

Remarks:

Transforms vecl (vector) by tbl (4x4 matrix), adds the result to vec2
(vector), then stores the sum to vec3 (vector). Note that tbl need be loaded
using intrinsic function 1d_ext().

<machine.h> or <umachine.h>

vecl V ector
vec2 V ector
vec3 Vector

#include <machine.h>
extern float tbl[4][4]:;
extern float datal[4];
extern float data2[4];
extern float data3[4];
void main(void)

{
1d_ext(tbl);
ftrvadd(datal,data?,data3);
/* data3 = datal x tbl + data2 */
/* As 1=0,1,2,3 the result in data3 will be as */
/* follows: data3[i]=datal[O0]*tbI[O][i] */
/* +datal[1]*tbI[1][i] */
/* +datal[2]*tbI[2][i] */
/* +datal[3]*tbI[3][i] */
/* +data2[i] */
}

This function isvalid only when the cpu = sh4 option is specified.

Rev. 1.0, 08/00, page 272 of 890

HITACHI

void ftrvsub(float vecl[4], float vec2[4], float vec3[4])

Description: Transforms vecl (vector) by thl (4x4 matrix), subtracts vec2 (vector) from
the result, then stores the difference to vec3 (vector). Note that thl needs be
loaded using intrinsic function Id_ext().

Header: <machine.h> or <umachine.h>
Parameters: vecl Vector

vec2 V ector

vec3 Vector
Example: #include <machine.h>

extern float tbl[4][4]:;

extern float datal[4];

extern float data2[4];

extern float data3[4];

void main(void)

{
1d_ext(tbl);
ftrvsub(datal,data?,data3);

/* data3 = datal x tbl - data2 */
/* As 1=0,1,2,3 the result in data3 will be as */
/* follows: data3[i]=datal[0]*tbI[0][i] */
/* +datal[1]*tbI[1][i] */
/* +datal[2]*tbI[2][i] */
/* +datal[3]*tbI[3][i] */
/* -data2[i] */
}
Remarks: This function isvalid only when the cpu = sh4 option is specified.

Rev. 1.0, 08/00, page 273 of 890
HITACHI

void add4(float vecl[4], float vec2[4], float vec3[4])

Description:
Header:

Parameters:

Example:

Remarks:

Stores the sum of vecl (vector) and vec2 (vector) to vec3 (vector).

<machine.h> or <umachine.h>

vecl Vector
vec2 V ector
vec3 Vector

#include <machine.h>
extern float datal[4];
extern float data2[4];
extern float data3[4];
void main(void)
{
add4(datal,data2,data3); /* data3 = datal + data2 */

}

Thisfunction isvalid only when the cpu = sh4 option is specified.

void sub4(float vecl[4], float vec2[4], float vec3[4])

Description:
Header:

Parameters:

Example:

Remarks:

Stores the difference between vecl (vector) and vec2 (vector) to vec3 (vector).

<machine.h> or <umachine.h>

vecl Vector
vec2 Vector
vec3 Vector

#include <machine.h>
extern float datal[4];
extern float data2[4];
extern float data3[4];
void main(void)
{
sub4(datal,data2,data3); /* data3 = datal - data2 */

}

This function isvalid only when the cpu = sh4 option is specified.

Rev. 1.0, 08/00, page 274 of 890

HITACHI

void mtrx4mul(float mat1[4], float mat2[4])

Description:

Header:

Parameters:

Example:

Remarks:

Transforms mat1 (4x4 matrix) by tbl (4x4 matrix), and stores the result to mat2.
Note that thl needs be loaded using intrinsic instruction Id_ext().

<machine.h> or <umachine.h>

matl 4x4 matrix
mat2 4x4 matrix

#include <machine.h>
extern float tbl[4]1[4];
extern float tbl11[4][4];
extern float tb12[4][4];
void main(void)
{
1d_ext(tbl);
mtrx4mul (tb1l,tbl2); /* thl2 = thll x tbl */
s

This function isvalid only when the cpu = sh4 option is specified.

This function is 4x4 matrix operation and therefore is not commutative.
Example

extern float matA[][]:;
extern float matB[]1[]:;
int judge({
float datal[4][4], data2[4][4]:
set_imask(15);
1d_ext(matA);
mtrx4mul (matB,datal) ;/* datal=matB x matA */
1d_ext(matB);
mtrx4mul (matA,data?);/* data2=matA x matB */
--.-../* elements of datal[][] and data?[][] do */
/* not necessarily match. */

Rev. 1.0, 08/00, page 275 of 890
HITACHI

void mtrx4muladd(float mat1[4], float mat2[4], float mat3[4])

Description: Transforms mat1 (4x4 matrix) by tbl (4x4 matrix), adds the result of mat2 (4x4
matrix), and stores the sum to mat3 (4x4 matrix).
Note that thl needs be loaded using intrinsic instruction Id_ext().

Header: <machine.h> or <umachine.h>

Parameters: mat1 4x4 matrix
mat2 4x4 matrix
mat3 4x4 matrix

Example: #include <machine.h>

extern float tbl[4][4]:;
extern float tbl1[4][4];
extern float tbl2[4][4];
extern float tbl3[4][4];
void main(void)

{
1d_ext(tbl);
mtrx4muladd(tb1l,tbl2, tbl3);
/* tbl2 = tbll x tbl +tbl2 */
}
Remarks: Thisfunction isvalid only when the cpu = sh4 option is specified.

Thisfunction is 4x4 matrix operation and therefore is not commutative.

Rev. 1.0, 08/00, page 276 of 890
HITACHI

void mtrx4mulsub(float mat1[4], float mat2[4], float mat3[4])

Description: Transforms matl (4x4 matrix) by tbl (4x4 matrix), subtracts mat2 (4x4 matrix)
from the result, and stores the difference to mat3 (4x4 matrix).
Note that thl needs be loaded using intrinsic instruction Id_ext().

Header: <machine.h> or <umachine.h>

Parameters: mat1 4x4 matrix
mat2 4x4 matrix
mat3 4x4 matrix

Example: #include <machine.h>

extern float tbl[4][4]:;
extern float tbl1[4][4];
extern float tbl2[4][4];
extern float tbl3[4][4];
void main(void)
{

1d_ext(tbl);

mtrx4mulsub(tbll,tbl2, tbhl3);

/* tbl2 = tbll x tbl - tbl2 */

}

Remarks: Thisfunction isvalid only when the cpu = sh4 option is specified.

Thisfunction is 4x4 matrix operation and therefore is not commutative.

Rev. 1.0, 08/00, page 277 of 890
HITACHI

void Id_ext(float mat1[4] [4])

Description: Loads mat (4x4 matrix) to extension register.
Header: <machine.h> or <umachine.h>

Parameters: mat Ax4 matrix

Example: #include <machine.h>

extern float tbl[4][4]:;
void main(void)
{
1d_ext(tbl);
}

Remarks: 1. Thisfunction isvalid only when the cpu = sh4 option is specified.
2. Intrinsic functionsld_ext() changes the floating point register bank bit
(FR) of the floating point status control register (FPSCR) to access
extension register. Therefore, when this function is used in an interrupt
function, change the interrupt mask before and after the vector operation
intrinsic function.

Rev. 1.0, 08/00, page 278 of 890
HITACHI

void st_ext(float mat1[4] [4])

Description: Stores contents of extension register to mat (4x4 matrix).
Header: <machine.h> or <umachine.h>

Parameters: mat Ax4 matrix

Example: #include <machine.h>

extern float tbl[4][4]:;
void main(void)
{
st_ext(tbl);
}

Remarks: 1. Thisfunction isvalid only when the cpu = sh4 option is specified.
2. Intrinsic functions st_ext() changes the floating point register bank bit
(FR) of the floating point status control register (FPSCR) to access
extension register. Therefore, when this function isused in an interrupt
function, change the interrupt mask before and after the vector operation
intrinsic function.

Rev. 1.0, 08/00, page 279 of 890
HITACHI

10.3

10.3.1

C/C++ Libraries

Standard C Libraries

Overview of Libraries

This section describes the specifications of the C library functions, which can be used generally in
C/C++ programs. This section gives an overview of the library configuration, and describes the
layout and the terms used in this library function description.

() Library Types

A library implements standard processing such as input/output and string manipulation in the
form of C/C++ language functions. Libraries can be used by including standard include files
for each unit of processing.
Standard include files contain declarations for the corresponding libraries and definitions of the
macro names necessary to use them.

Table 10.27 shows the various library types and the corresponding standard include files.

Table 10.27 Library Typesand Corresponding Standard Include Files

Standard Include

Library Type Description Files

Program diagnostics Outputs program diagnostic information. <assert.h>

Character handling Handles and checks characters. <ctype.h>

Mathematics Performs numerical calculations such as trigonometric <math.h>
functions. <mathf.h>

Non-local jumps Supports transfer of control between functions. <setjmp.h>

Variable arguments Supports access to variable arguments for functions <stdarg.h>
with such arguments.

Input/output Performs input/output handling. <stdio.h>

General utilities Performs C program standard processing such <stdlib.h>
as storage area management.

String handling Performs string comparison, copying, etc. <string.h>

Rev. 1.0, 08/00, page 280 of 890

HITACHI

In addition to the above standard include files, standard include files consisting solely of macro
name definitions, shown in table 10.28, are provided to improve programming efficiency.

Table 10.28 Standard Include Files Comprising Macr o Name Definitions

Standard Include File Description

<stddef.h> Defines macro names used by the standard include files.

<float.h> Defines various limit values relating to the internal representation of
floating-point numbers.

<limits.h> Defines various limit values relating to compiler internal processing.

<errno.h> Defines the value to set in errno when an error is generated in a library
function.

(2) Organization of Library Part

The organization of the library part of this manual is described below.

Library functions are categorized for each standard include file, and descriptions are given for
each standard include file. For each category, thereisfirst a description relating to the macro
names and function declarations defined in the standard include file (figure 10.3), followed by
adescription of each function (figure 10.4).

Figure 10.3 shows the standard include file description layout, and figure 10.4, the function
description layout.

<standard include file name>

Summarizes the overall function of this standard include file.

Describes names defined or declared in this standard include file according to the name
categories such as [Type], [Constant], [Variable], and [Function]. For macro names, (macro) is
always attached beside the name category or name description.

Adds description if implementation-defined specifications are included or notes common to the

functions declared in this standard include file are given.

Figure10.3 Layout of Standard Include File Description

Rev. 1.0, 08/00, page 281 of 890
HITACHI

Function name Functional overview

Description: Describes the library function.

Header file: Shows the name of standard include file to be declared.

Return value: Normal: Shows the return value when the library function ends normally.
Abnormal: Shows the return value when the library function ends abnormally.

Parameters: Indicates the meanings of the parameters.

Example: Describes the calling procedure.

Error conditions:

Conditions for the occurrence of errors that cannot be

determined from the return value in library function processing.

If such an error occurs, the value defined in each compiler for the error type is set
in errno*.

Remarks: Details the library function specifications.
Implementation define:
The compiler processing method.

Figure10.4 Layout of Function Description

Note: errnoisavariable that storesthe error type if an error occurs during execution of alibrary
function. See section 10.3.1, descriptions for <stddef.h>, for details.

(3) Terms Used in Library Function Descriptions
(a) Stream input/output
In datainput/output, it would lead to poor efficiency if each call of an input/output
function, which handles a single character, drove the input/output device and the OS
functions. To solve this problem, a storage area called a buffer is normally provided, and
the datain the buffer isinput or output at one time.

From the viewpoint of the program, on the other hand, it is more convenient to call
input/output functions for each character.

Using the library functions, character-by-character input/output can be performed
efficiently without awareness of the buffer status within the program by automatically
performing buffer management.

Those library functions enable a programmer to write a program considering the
input/output as a single data stream, making the programmer be able to implement data
input/output efficiently without being aware of the detailed procedure. Such capability is
called stream input/output.

Rev. 1.0, 08/00, page 282 of 890
HITACHI

(b) FILE structure and file pointer

The buffer, and other information, required for the stream input/output described above are

stored in asingle structure, defined by the name FILE in the <stdio.h> standard include

file.

In stream input/output, all files are handled as having a FILE structure data structure. Files

of thiskind are called stream files. A pointer to this FILE structureis called afile pointer,

and is used to specify an input/output file.

Thefile pointer is defined as

FILE *fp;

When afileis opened by the fopen function, etc., the file pointer is returned. If the open

processing fails, NULL isreturned. Notethat if aNULL pointer is specified in another

stream input/output function, that function will end abnormally. When afile is opened, the
file pointer value must be checked to see whether the open processing has been successful.
(¢) Functions and macros

There are two library function implementation methods: functions and macros.

A function has the same interface as an ordinary user-written function, and is incorporated

during linkage. A macro is defined using a#define statement in the standard include file

relating to the function.

The following points must be noted concerning macros:

(i) Macros are expanded automatically by the preprocessor, and therefore a macro
expansion cannot be invalidated even if the user declares a function with the same
name.

(i) If an expression with a side effect as a macro parameter (assignment expression,
increment, decrement) is specified, itsresult will not be guaranteed.

Example: Macro definition of MACRO that calcul ates the absolute value of a
parameter, is as follows

If the following definition is made:

#define MACRQO(a) (a) >= 0 ? (a) : -(a)

and if

X=MACRQ(a++)

isin the program, the macro will be expanded as follows:
X = (a+t+t) >= 0 ? (a++) : -(at+)

a will be incremented twice, and the resultant value will be different from the absolute
value of theinitial value of a.
(d) EOF
In functions such as getc, getchar, and fgetc, that input datafrom afile, EOF isthe value
returned at end-of-file. The name EOF is defined in the <stdio.h> standard includefile.

Rev. 1.0, 08/00, page 283 of 890
HITACHI

(e) NULL
Thisisthe value when a pointer is not pointing at anything. The name NULL is defined in
the <stddef.h> standard include file.
(f) Null character
The end of astring literal in C isindicated by the characters\0. String parametersin
library functions must also conform to this convention. The characters \O indicating the
end of astring are called null characters.
(g) Return code
With some library functions, areturn value is used to determine the result (such as whether
the specified processing succeeded or failed). In this case, the return valueis called as the
return code.
(h) Text filesand binary files
Many systems have special file formatsto storedata. To support this facility, library
functions have two file formats: text files and binary files.
(i) Textfiles
A text fileis used to store ordinary text, and consists of a collection of lines. In text file
input, the new-line designator (\n) isinput as aline separator. In output, output of the
current line is terminated by outputting the new-line designator (\n). Text files are used
to input/output files that store standard text for each system. With text files, characters
input or output by alibrary function do not necessarily correspond to a physical stream
of datain thefile.
(ii) Binary files
A binary fileis configured asarow of byte data. Datainput or output by alibrary
function corresponds to aphysical list of datain thefile.
(i) Standard input/output files
Filesthat can be used as standard by input/output library functions by default without
preparations such as opening file are called standard input/output files. Standard
input/output files comprise the standard input file (stdin), standard output file (stdout), and
standard error output file (stderr).
(i) Standard input file (stdin)
Standard file to be input to a program.
(ii) Standard output file (stdout)
Standard file to be output from a program.
(iii) Standard error output file (stderr)
Standard file for storing output of error messages, etc., from a program.

Rev. 1.0, 08/00, page 284 of 890
HITACHI

()) Floating-point numbers
Floating-point numbers are numbers represented by approximation of real-numbers. InaC
source program, floating-point numbers are represented by decimal numbers, but inside the
computer they are normally represented by binary numbers.
In the case of binary numbers, the floating-point representation is as follows:
2" x m (n: integer, m: binary fraction)
Here, nis called the exponent of the floating-point number, and m is called the mantissa.
The number of bits to represent n and m is normally fixed so that a floating-point number
can be represented using a specific data size.
Some terms relating to floating-point numbers are explained below.

(i) Radix
An integer value indicating the number of distinct digitsin the number system used by
a floating-point number (10 for decimal, 2 for binary, etc.). Theradix isnormally 2.

(if) Rounding
Rounding is performed when an intermediate result of an operation of higher precision
than afloating-point number is stored as a floating-point number. Thereis rounding
up, rounding down, and half-adjust rounding (i.e., rounding up fractions over 1/2 and
rounding down fractions under 1/2; or, in binary representation, rounding down 0 and
rounding up 1).

(iii) Normalization
When a floating-point number is represented in the form 21 x m, the same number can
be represented in different ways.
Example: The following two expressions represent the same value.
25x1.0(y ((2) indicates a binary number)
26x0.1 %)
Usually, arepresentation in which the leading digit isnot 0 is used, in order to secure
the number of valid digits. Thisis called a normalized floating-point number, and the
operation that converts a floating-point number to this kind of representation is called
normalization.

(iv) Guard bit
When saving an intermediate result of a floating-point operation, data one bit longer
than the actual floating-point number is normally provided in order for rounding to be
carried out. However, this alone does not permit an accurate result to be achieved in
the event of digit dropping, etc. For this reason, the intermediate result is saved with
an extrabit, called aguard bit.

(k) File access mode
Thisis string that indicates the kind of processing to be carried out on afilewhenitis
opened. Thereare 12 different strings, as shown in table 10.29.

Rev. 1.0, 08/00, page 285 of 890
HITACHI

Table 10.29 File Access Modes

Access Mode Meaning

s

Open text file for reading

‘W' Open text file for writing

‘a' Open text file for addition

'rb’ Open binary file for reading

'wb' Open binary file for writing

‘ab’ Open binary file for addition

r+' Open text file for reading and updating
'w+' Open text file for writing and updating
‘a+' Open text file for addition and updating
'r+b' Open binary file for reading and updating
'w+b' Open binary file for writing and updating
‘a+b’' Open binary file for addition and updating

() Implementation definition

Definitions differ by compilers.

(m)Error indicator and end-of-file indicator

The following two data items are held for each stream file: (1) an error indicator that
indicates whether or not an error has occurred during file input/output, and (2) an end-of-
file indicator that indicates whether or not the input file has ended.

These data items can be referenced by the ferror function and the feof function,
respectively.

With some functions that handle stream files, error occurrence and end-of-file information
cannot be obtained from the return value alone. The error indicator and end-of-file
indicator are useful for checking the file status after execution of such functions.

(n) File position indicator

Stream files that can be read or written at any position within the file, such as disk files,
have an associated data item called afile position indicator that indicates the current
read/write position within thefile.

File position indicators are not used with stream files that do not permit the read/write
position within the file to be changed, such as terminals.

Rev. 1.0, 08/00, page 286 of 890

HITACHI

(4) Noteson use of libraries

(a) The contents of macros defined in alibrary differ for each compiler.
When alibrary is used, the behavior is undefined if the contents of these macros are

redefined.

(b) With libraries, errors are not detected in all cases. The behavior isundefined if library
functions are called in aform other than those shown in the descriptions in the following

sections.

<stddef.h>

Defines macro names used in common in the standard include file.

The following macro names are all implementati on-defined.

Type Definition Name Description

Type (macro) ptrdiff _t

Indicates the type of the result of subtracting two pointers.

size_t

Indicates the type of the result of an operation using the
sizeof operator.

Constant (macro) NULL

Indicates the value when a pointer is not pointing at anything.
This value is such that the result of a comparison with 0
using the equality operator (==) is true.

Variable (macro) errno

If an error occurs during library function processing, the error
code defined in the respective library is set in errno. By
setting 0 in errno before calling a library function and
checking the error code set in errno after the library function
processing has ended, it is possible to check whether an
error occurred during the library function processing.

Implementation Define

Iltem

Compiler Specifications

Value of macro NULL

The pointer type value 0 is set to void.

Contents of macro ptrdiff_t

int type

Rev. 1.0, 08/00, page 287 of 890
HITACHI

<assert.h>

Adds diagnostics into programs.

Type

Definition Name Description

Function (macro) assert Adds diagnostics into programs.

To invalidate the diagnostics defined by <assert.h>, define macro name NDEBUG with a#define
statement (#define NDEBUG) before including <assert.h>.

Note: If a#undef statement isused for macro name assert, the result of subsequent assert calls
will not be guaranteed.

void assert(int expression)

Description:

Header file:
Parameters:

Example:

Remarks:

Adds diagnostics into programs.

<assert.h>
expression Expression to be evaluated.

#i ncl ude <assert. h>
i nt expression;
assert (expression);

When the expression is true, the assert macro terminates processing without
returning avalue. If expression isfalse, it outputs diagnostic information to the
standard error file in the form defined by the compiler, and then calls the abort
function.

The diagnostic information includes the parameter's program text, sourcefile
name, and source line numbers.

Implementation define;

The following message is output when the expression is false in assert
(expression):
ASSERTION FAILED:AexpressionAFI L EA<file name>,lineA<line number>

Rev. 1.0, 08/00, page 288 of 890

HITACHI

<ctype.h>

Performs type determination and conversion for characters.

Type Definition Name Description

Function isalnum Tests for an alphabetic character or a decimal digit.
isalpha Tests for an alphabetic character.
iscntrl Tests for a control character.
isdigit Tests for a decimal digit.
isgraph Tests for a printing character except space.
islower Tests for a lowercase letter.
isprint Tests for a printing character, including space.
ispunct Tests for a special character.
isspace Tests for a space character.
isupper Tests for an uppercase letter.
isxdigit Tests for a hexadecimal digit.
tolower Converts an uppercase letter to lowercase.
toupper Converts a lowercase letter to uppercase.

In the above functions, if the input parameter value is not within the range that can be represented
by the unsigned char type and is hot EOF, the operation of the function is undefined. Character

types are listed in table 10.30.

Rev. 1.0, 08/00, page 289 of 890
HITACHI

Table 10.30 Character Types

Character Type

Description

Uppercase letter

Any of the following 26 characters
AR CL DB LG CHY LK UL M N O P D R S
T,'U, VLWL, 7

Lowercase letter

Any of the following 26 characters
lal’ Lbl’ ‘C,’ ldl, Lel, lfl’ lg1’ lhl, lil, lj1’ lkl’ lIV, lmvl Anl, IOI, Apvl Aql, lr,’ lsl’ ltl’ lu1’

VLW, X, ;y’ z

Alphabetic character

Any uppercase or lowercase letter

Decimal digit

Any of the following 10 characters
0,12 AT Y

Printing character

A character, including space (*’) that is displayed on the screen
(corresponding to ASCII codes 0x20 to OX7E)

Control character

Any character except a printing character

White-space character

Any of the following 6 characters
Space (*), form feed (\f), new-line (\n’), carriage return (‘\r’), horizontal
tab (\t'), vertical tab (‘\v")

Hexadecimal digit

Any of the following 22 characters
‘0, ‘1,2, '3, '4','5",'6’, ‘7", '8, ‘9,
‘A, 'B’, ‘C, ‘D', 'E’, 'F,

‘a, b, e, d e

Special character

Any printing character except space (‘ '), an alphabetic character, or a
decimal digit

Implementation Define

Item

Compiler Specifications

The character set inspected by the isalnum Character set represented by the unsigned char type.
function, isalpha function, iscntrl function, Table 10.31 shows the character set that results in a
islower function, isprint function, and true return value.

isupper functions

Rev. 1.0, 08/00, page 290 of 890

HITACHI

Table 10.31 True Character

Function Name True Characters
isalnum '0'to'9", 'A'to 'Z', 'a' to '2'
isalpha '‘A'to 'Z', 'a' to 'z

iscntrl \x00' to "x1f', "\x7f'
islower ‘a'to 'z’

isprint \x20' to "\X7E'

isupper '‘A'to 'Z'

int isalnum(int c)
Description: Tests for an alphabetic character or a decimal digit.
Header file: <ctype.h>

Return values: If character cisan aphabetic character or adecimal digit:
Nonzero
If character cis not an alphabetic character or a decimal digit: O

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret =i sal nun(c);

Rev. 1.0, 08/00, page 291 of 890
HITACHI

int isalpha(int c)
Description: Tests for an aphabetic character.
Header file: <ctype.h>

Return values: If character c is an aphabetic character: Nonzero
If character cis not an alphabetic character: O

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret =i sal pha(c);
int iscntrl(int c)
Description: Testsfor acontrol character.

Header file: <ctype.h>

Return values. If character cisacontrol character: Nonzero
If character cis not a control character: O

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret=iscntrl (c);

Rev. 1.0, 08/00, page 292 of 890
HITACHI

int isdigit(int c)
Description: Testsfor adecimal digit.
Header file: <ctype.h>

Returnvalues: If character cisadecimal digit: Nonzero
If character cisnot adecimal digit: O

Parameters: c Character to be tested
Example: #i ncl ude <ctype. h>
int ¢, ret;

ret=isdigit(c);

int isgraph(int c)
Description: Testsfor any printing character except space (*).
Header file: <ctype.h>

Return values: If character cisaprinting character except space: Nonzero
If character cisnot a printing character except space: 0

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret =i sgraph(c);

Rev. 1.0, 08/00, page 293 of 890
HITACHI

int islower (int c)
Description: Testsfor alowercase letter.
Header file: <ctype.h>

Return values: If character cis alowercase letter: Nonzero
If character cis not alowercase letter: O

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret=islower(c);
int isprint(int c)
Description: Testsfor a printing character, including space (*).

Header file: <ctype.h>

Return values: If character cisaprinting character, including space: Nonzero
If character cis not a printing character, including space: 0

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret=isprint(c);

Rev. 1.0, 08/00, page 294 of 890
HITACHI

int ispunct(int c)
Description: Testsfor aspecia character.
Header file: <ctype.h>

Returnvalues: If character cisaspecia character: Nonzero
If character cisnot aspecial character: 0

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret =i spunct (c);

int isspace(int c)
Description: Tests for awhite-space character.

Header file: <ctype.h>

Return values: If character c is awhite-space character: Nonzero
If character cis not awhite-space character: 0

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret =i sspace(c);

Rev. 1.0, 08/00, page 295 of 890
HITACHI

int isupper (int c)
Description: Tests for an uppercase | etter.
Header file: <ctype.h>

Return values: If character cisan uppercase letter: Nonzero
If character cis not an uppercase letter: O

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret =i supper(c);
int isxdigit(int c)
Description: Testsfor a hexadecimal digit.

Header file: <ctype.h>

Returnvalues: If character cisahexadecimal digit: Nonzero
If character cis not a hexadecimal digit: O

Parameters: c Character to be tested

Example: #i ncl ude <ctype. h>
int c, ret;
ret=isxdigit(c);

Rev. 1.0, 08/00, page 296 of 890
HITACHI

int tolower (int c)
Description: Converts an uppercase letter to the corresponding lowercase | etter.
Header file: <ctype.h>

Returnvalues: If character cisan uppercase letter: Lowercase letter
corresponding to character ¢
If character cis not an uppercase letter: Character ¢

Parameters: C Character to be converted

Example: #i ncl ude <ctype. h>
int c, ret;
ret=tol oner(c);
int toupper (int c)
Description: Converts alowercase | etter to the corresponding uppercase letter.

Header file: <ctype.h>

Returnvalues: If character cisalowercase letter: Uppercase letter
corresponding to character ¢
If character cisnot alowercase letter: Character ¢

Parameters: C Character to be converted

Example: #i ncl ude <ctype. h>
int c, ret;
r et =t oupper(c);

Rev. 1.0, 08/00, page 297 of 890
HITACHI

<float.h>

Defines various limits relating to the internal representation of floating-point numbers.

The followings are all implementation-defined.

Type Definition Name Definition Value

Description

Constant FLT_RADIX
(macro)

2

Indicates the radix in exponent
representation.

FLT_ROUNDS

1

Indicates whether or not the result of an
add operation is rounded off.

The meaning of this macro definition is as
follows:

(1) When result of add operation is
rounded off: Positive value

(2) When result of add operation is
rounded down: 0

(3) When nothing is specified: —1

The rounding-off and rounding-down
methods are implementation-defined.

FLT_GUARD

1

Indicates whether or not a guard bit is
used in multiply operations.

The meaning of this macro definition is as
follows:

(1) When guard bit is used: 1
(2) When guard bit is not used: 0

FLT_NORMALIZE 1

Indicates whether or not floating-point
values are normalized.

The meaning of this macro definition is as
follows:

(1) When normalized: 1
(2) When not normalized: 0

FLT_MAX

3.4028235677973364e
+38F

Indicates the maximum value that can be
represented as a float type floating-point
value.

DBL_MAX

1.7976931348623158e
+308

Indicates the maximum value that can be
represented as a double type floating-
point value.

LDBL_MAX

1.7976931348623158e
+308

Indicates the maximum value that can be
represented as a long double type
floating-point value.

Rev. 1.0, 08/00, page 298 of 890

HITACHI

Type

Definition Name

Definition Value

Description

Constant
(macro)

FLT_MAX_EXP

127

Indicates the power-of-radix maximum
value that can be represented as a float
type floating-point value.

DBL_MAX_EXP

1023

Indicates the power-of-radix maximum
value that can be represented as a double
type floating-point value.

LDBL_MAX_EXP

1023

Indicates the power-of-radix maximum
value that can be represented as a long
double type floating-point value.

FLT_MAX_10_EXP

38

Indicates the power-of-10 maximum value
that can be represented as a float type
floating-point value.

DBL_MAX_10_EXP

308

Indicates the power-of-10 maximum value
that can be represented as a double type
floating-point value.

LDBL_MAX_10_
EXP

308

Indicates the power-of-10 maximum value
that can be represented as a long
double type floating-point value.

FLT_MIN

1.175494351e-38F

Indicates the minimum positive value that
can be represented as a float type
floating-point value.

DBL_MIN

2.2250738585072014e
-308

Indicates the minimum positive value that
can be represented as a double type
floating-point value.

LDBL_MIN

2.2250738585072014e
-308

Indicates the minimum positive value that
can be represented as a long double type
floating-point value.

FLT_MIN_EXP

-149

Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a float type positive value.

DBL_MIN_EXP

-1074

Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a double type positive
value.

LDBL_MIN_EXP

-1074

Indicates the power-of-radix minimum
value of a floating-point value that can be
represented as a long double type positive
value.

FLT_MIN_10_EXP

44

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a float type positive value.

HITACHI

Rev. 1.0, 08/00, page 299 of 890

Type Definition Name Definition Value

Description

Constant DBL_MIN_10_EXP -323

(macro)

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a double type positive
value.

LDBL_MIN_10_EXP -323

Indicates the power-of-10 minimum value
of a floating-point value that can be
represented as a long double type positive
value.

FLT DIG 6

Indicates the maximum number of digits in
float type floating-point value decimal-
precision.

DBL_DIG 15

Indicates the maximum number of digits in
double type floating-point value decimal-
precision.

LDBL_DIG 15

Indicates the maximum number of digits in
long double type floating-point value
decimal-precision.

FLT_MANT DIG 24

Indicates the maximum number of
mantissa digits when a float type floating-
point value is represented in the radix.

DBL_MANT DIG 53

Indicates the maximum number of
mantissa digits when a double type
floating-point value is represented in the
radix.

LDBL_MANT_DIG 53

Indicates the maximum number of
mantissa digits when a long double type
floating-point value is represented in the
radix.

FLT_EXP_DIG 8

Indicates the maximum number of
exponent digits when a float type floating-
point value is represented in the radix.

DBL_EXP_DIG 11

Indicates the maximum number of
exponent digits when a double type
floating-point value is represented in the
radix.

LDBL_EXP_DIG 11

Indicates the maximum number of
exponent digits when a long double type
floating-point value is represented in the
radix.

FLT_POS_EPS 5.9604648328104311e
-8F

Indicates the minimum floating-point value
x for which 1.0 + x # 1.0 in float type.

Rev. 1.0, 08/00, page 300 of 890
HITACHI

Type Definition Name Definition Value Description
Constant DBL_POS_EPS 1.1102230246251567¢e Indicates the minimum floating-point
(macro) -16 value x for which 1.0 + x # 1.0 in

double type.

LDBL_POS_EPS

1.1102230246251567¢e
-16

Indicates the minimum floating-point
value x for which 1.0 + x # 1.0 in long
double type.

FLT_NEG_EPS

2.9802324164052156¢
-8F

Indicates the minimum floating-point
value x for which 1.0 — x # 1.0 in float

type.

DBL_NEG_EPS

5.5511151231257834e
=17

Indicates the minimum floating-point
value x for which 1.0 —x # 1.0in
double type

LDBL_NEG_EPS

5.5511151231257834e
-17

Indicates the minimum floating-point
value x for which 1.0 —x # 1.0 in long
double type.

FLT_POS_EPS_EXP

-23

Indicates the minimum integer n for
which 1.0 + (radix)" # 1.0 in float type.

DBL_POS_EPS_EXP

-52

Indicates the minimum integer n for
which 1.0 +(radix)" # 1.0 in double

type.

LDBL_POS_EPS_EXP

52

Indicates the minimum integer n for
which 1.0 + (radix)" # 1.0 in long
double type.

FLT _NEG_EPS_EXP

24

Indicates the minimum integer n for
which 1.0 — (radix)" # 1.0 in float type.

DBL_NEG_EPS_EXP

53

Indicates the minimum integer n for
which 1.0 — (radix)" # 1.0 in double

type.

LDBL_NEG_EPS_EXP

53

Indicates the minimum integer n
for which 1.0 — (radix)" # 1.0 in long
double type.

HITACHI

Rev. 1.0, 08/00, page 301 of 890

<limits.h>

Defines various limits relating to the internal representation of integer type data.
The followings are all implementation-defined.

Type Definition Name Definition Value Description
Constant CHAR_BIT 8 Indicates the number of bits of which char type is
(macro) composed.
CHAR_MAX 127 Indicates the maximum value that a char type
variable can have as a value.
CHAR_MIN -128 Indicates the minimum value that a char type
variable can have as a value.
SCHAR_MAX 127 Indicates the maximum value that a signed char
type variable can have as a value.
SCHAR_MIN -128 Indicates the minimum value that a signed char
type variable can have as a value.
UCHAR_MAX 255U Indicates the maximum value that an unsigned
char type variable can have as a value.
SHRT_MAX 32767 Indicates the maximum value that a short type
variable can have as a value.
SHRT_MIN -32768 Indicates the minimum value that a short type
variable can have as a value.
USHRT_MAX 65535U Indicates the maximum value that an unsigned
short int type variable can have as a value.
INT_MAX 217483647 Indicates the maximum value that an int type
variable can have as a value.
INT_MIN -2147483647-1 Indicates the minimum value that an int type
variable can have as a value.
UINT_MAX 4294967295U Indicates the maximum value that an unsigned int
type variable can have as a value.
LONG_MAX 217483647L Indicates the maximum value that a long type
variable can have as a value.
LONG_MIN —2147483647L-1L Indicates the minimum value that a long type
variable can have as a value.
ULONG_MAX 4294967295U Indicates the maximum value that an unsigned

long type variable can have as a value.

Rev. 1.0, 08/00, page 302 of 890
HITACHI

<errno.h>

Defines the value to set in errno when an error is generated in alibrary function.
The followings are all implementation-defined.

Type Definition Name

Description

Variable errno
(macro)

int type variable. An error number is set when an error is

generated in a library function.

Constant ERANGE

Refer to section 12.3, Standard Library Error Messages.

(macro) EDOM

Same as above

EDIV

Same as above

ESTRN

Same as above

PTRERR

Same as above

ECBASE

Same as above

ETLN

Same as above

EEXP

Same as above

EEXPN

Same as above

EFLOATO

Same as above

EFLOATU

Same as above

EDBLO

Same as above

EDBLU

Same as above

ELDBLO

Same as above

ELDBLU

Same as above

NOTOPN

Same as above

EBADF

Same as above

ECSPEC

Same as above

HITACHI

Rev. 1.0, 08/00, page 303 of 890

<math.h>

Performs various mathematical operations.
The followings are all implementation-defined.

Type Definition Name Description

Constant EDOM
(macro)

Indicates the value to be set in errno if the value of an parameter input
to a function is outside the range of values defined in the function.

ERANGE Indicates the value to be set in errno if the result of a function cannot
be represented as a double type value, or if overflow or underflow
occurs.

HUGE_VAL Indicates the value for the function return value if the result of a

function overflows.

Function acos

Computes the arc cosine of a floating-point number.

asin Computes the arc sine of a floating-point number.

atan Computes the arc tangent of a floating-point number.

atan2 Computes the arc tangent of the result of a division of two floating-
point numbers.

cos Computes the cosine of a floating-point radian value.

sin Computes the sine of a floating-point radian value.

tan Computes the tangent of a floating-point radian value.

cosh Computes the hyperbolic cosine of a floating-point number.

sinh Computes the hyperbolic sine of a floating-point number.

tanh Computes the hyperbolic tangent of a floating-point number.

exp Computes the exponential function of a floating-point number.

frexp Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.

Idexp Multiplies a floating-point number by a power of 2.

log Computes the natural logarithm of a floating-point number.

log10 Computes the base-ten logarithm of a floating-point number.

modf Breaks a floating-point number into integral and fractional parts.

pow Computes a power of a floating-point number.

sqrt Computes the positive square root of a floating-point number.

cell Computes the smallest integral value not less than or equal to the
given floating-point number.

fabs Computes the absolute value of a floating-point number.

floor Computes the largest integral value not greater than or equal to the
given floating-point number.

fmod Computes the floating-point remainder of division of two floating-point

numbers.

Rev. 1.0, 08/00, page 304 of 890

HITACHI

Operation in the event of an error is described below.

(1) Domain error
A domain error occurs if the value of a parameter input to afunction is outside the domain
over which the mathematical function is defined. In this case, the value of EDOM issetin
errno. The function return value depends on the compiler.

(2) Range error
A range error occursif the result of afunction cannot be represented as a double type value. In
this case, the value of ERANGE isset in errno. If the result overflows, the function returns
the value of HUGE_V AL, with the same sign as the correct value of the function. If the result
underflows, O is returned as the return value.

Notes

1. If thereisapossibility of adomain error resulting from a <math.h> function call, it is
dangerous to use the resultant value directly. The value of errno should always be checked
before using the result in such cases.

Example:
1 x=asi n(a);
2 i f (errno==EDOM
3 printf ("error\n");
4 else
5 printf ("result is : %f\n",x);

Inline 1, the arc sine value is computed using the asin function. If the value of parameter ais
outside the domain of the asin function [-1.0, 1.0], the EDOM valueissetinerrno. Line2
determines whether adomain error has occurred. If adomain error has occurred, error is output
inline 3. If thereis no domain error, the arc sine value isoutput in line 5.

Rev. 1.0, 08/00, page 305 of 890
HITACHI

2. Whether or not arange error occurs depends on the internal representation format of floating-
point number determined by the compiler. For example, if an internal representation format
that allows infinity to be represented as avalue is used, <math.h> library functions can be
implemented without causing range errors.

3. Inthefollowing cases, errno will not be set by the fabs and sgrt function even though an error
has occrred in the function.

(1) cpu=sh3e and double=float options are specified.
(2) cpu=sh4 option is specified.
(3) cpu=sh2e and double=float options are specified (only fabs function).

Implementation Define

Item Compiler Specifications

Value returned by a mathematical functionifan A not-a-number is returned. For details on the
input parameter is out of the range format of not-a-numbers, refer to section
10.1.3, Floating-Point Number Specifications.

Whether errno is set to the value of macro Not specified
ERANGE if an underflow error occurs in a
mathematical function

Whether a range error occurs if the second A range error occurs.
argument in the fmod function is 0

Rev. 1.0, 08/00, page 306 of 890
HITACHI

double acos(double d)
Description: Computes the arc cosine of afloating-point number.
Header file: <math.h>
Returnvalues: Normal: Arc cosineof d
Abnormal: In case of domain error: Returns not-a-number.
Parameters: d Floating-point number for which arc cosine is to be computed

Example: #i ncl ude <math. h>
doubl e d, ret;
ret =acos(d);

Error conditions:
A domain error occurs for avalue of d not in the range [-1.0, +1.0].

Remarks: The acos function returns the arc cosine in the range [0, 1] by the radian.

double asin(double d)
Description: Computes the arc sine of a floating-point number.
Header file: <math.h>
Return values: Normal: Arc sineof d
Abnormal: In case of domain error: Returns not-a-number.
Parameters: d Floating-point number for which arc sineis to be computed

Example: #i ncl ude <math. h>
doubl e d, ret;
ret=asin(d);

Error conditions:
A domain error occurs for avalue of d not in the range [-1.0, +1.0].

Remarks: The asin function returns the arc sine in the range [—172, +172] by the radian.

Rev. 1.0, 08/00, page 307 of 890
HITACHI

double atan(double d)
Description: Computes the arc tangent of afloating-point number.

Header file: <math.h>

Returnvalues: Normal: Arc tangent of d

Abnorma: 0O
Parameters: d Floating-point number for which arc tangent is to be computed
Example: #i ncl ude <math. h>

doubl e d, ret;
ret=atan(d);

Remarks: The atan function returns the arc tangent in the range (172, +172) by the radian.

Rev. 1.0, 08/00, page 308 of 890
HITACHI

double atan2(doubley, double x)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Remarks:

Computes the arc tangent of the division of two floating-point numbers.
<math.h>

Normal: Arc tangent value when y is divided by x

Abnormal: In case of domain error: Returns not-a-number.

X Divisor
y Dividend

#i ncl ude <mat h. h>
double x, vy, ret;
ret=atan2(y, x);

A domain error occursif the values of both x and y are 0.0.

The atan2 function returns the arc tangent in the range (-t +1q by the radian.
The meaning of the atan2 function isillustrated in figure 10.5. As shownin the
figure, the result of the atan2 function is the angle between the X-axis and a
straight line passing through the origin and point (X, y).

If y =0.0 and x is negative, theresultisTt If x = 0.0, theresult is+172,
depending on whether y is positive or negative.

)

/, atan2 (y, x)

X

X

Figure10.5 Meaning of atan2 Function

Rev. 1.0, 08/00, page 309 of 890
HITACHI

double cos(double d)
Description: Computes the cosine of afloating-point radian value.

Header file: <math.h>

Returnvalues. Normal: Cosineof d
Abnormal: 0O
Parameters: d Radian value for which cosineisto be computed
Example: #i ncl ude <math. h>
doubl e d, ret;
ret=cos(d);

double sin(double d)
Description: Computes the sine of afloating-point radian value.

Header file: <math.h>

Returnvalues:. Normal: Sineof d
Abnormal: 0O
Parameters: d Radian value for which sine isto be computed
Example: #i ncl ude <math. h>
doubl e d, ret;
ret=sin(d);

Rev. 1.0, 08/00, page 310 of 890
HITACHI

double tan(double d)
Description: Computes the tangent of a floating-point radian value.

Header file: <math.h>

Returnvalues: Normal: Tangent of d
Abnormal: O
Parameters: d Radian value for which tangent is to be computed
Example: #i ncl ude <math. h>
doubl e d, ret;
ret=tan(d);

double cosh(double d)
Description: Computes the hyperbolic cosine of afloating-point number.

Header file: <math.h>

Returnvalues. Normal: Hyperbolic cosine of d
Abnorma: 0O
Parameters: d Floating-point number for which hyperbolic cosineisto be
computed
Example: #i ncl ude <math. h>

doubl e d, ret;
ret=cosh(d);

Rev. 1.0, 08/00, page 311 of 890
HITACHI

double sinh(double d)
Description: Computes the hyperbolic sine of a floating-point number.

Header file: <math.h>

Returnvalues: Normal: Hyperbolic sine of d

Abnorma: 0O
Parameters: d Floating-point number for which hyperbolic sineisto be

computed

Example: #i ncl ude <math. h>

doubl e d, ret;

ret=si nh(d);

doubletanh(double d)
Description: Computes the hyperbolic tangent of a floating-point number.

Header file: <math.h>

Returnvalues: Normal: Hyperbolic tangent of d
Abnorma: 0O
Parameters: d Floating-point number for which hyperbolic tangent isto be
computed
Example: #i ncl ude <mat h. h>

doubl e d, ret;
ret=tanh(d);

Rev. 1.0, 08/00, page 312 of 890
HITACHI

double exp(double d)
Description: Computes the exponential function of a floating-point number.

Header file: <math.h>

Returnvalues: Normal: Exponential value of d
Abnorma: 0O
Parameters: d Floating-point number for which exponential function isto be
computed
Example: #i ncl ude <math. h>
doubl e d, ret;
ret =exp(d);

double frexp(double value, doubleint *¢€)
Description: Breaks a floating-point number into a[0.5, 1.0) value and a power of 2.
Header file: <math.h>

Return values:. Normal: If valueis0.0: 0.0

If valueis not 0.0: Value of ret defined by
ret * 2va|ue pointed to by e — value

Abnormal: O
Parameters: value Floating-point number to be broken into a[0.5, 1.0) value
and a power of 2
e Pointer to storage area that holds power-of-2 value
Example: #i ncl ude <math. h>
doubl e ret, val ue;
int *e;

ret=frexp(val ue, e);

Remarks: The frexp function breaks value into a[0.5, 1.0) value and a power of 2. It
stores the resultant power-of-2 value in the area pointed to by e.

The frexp function returns the return valueret in therange [0.5, 1.0) or as 0.0.

If value is 0.0, the contents of the int storage area pointed to by e and the value
of ret are both 0.0.

Rev. 1.0, 08/00, page 313 of 890
HITACHI

doubleldexp(doubleret, int f)
Description: Multiplies a floating-point number by a power of 2.

Header file: <math.h>

Returnvalues: Normal: Result of e* 2f operation
Abnorma: 0O
Parameters: e Floating-point number to be multiplied by a power of 2
f Power-of-2 value
Example: #i ncl ude <math. h>
doubl e ret, e;
int f;

ret=Ildexp(e, f);

doublelog(double d)

Description: Computes the natural logarithm of a floating-point number.
Header file: <math.h>

Returnvalues: Normal: Natural logarithm of d

Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which natural logarithm isto be
computed
Example: #i ncl ude <math. h>
doubl e d, ret;
ret=log(d);

Error conditions:
A domain error occursif d is negative.
A range error occursif d is0.0.

Rev. 1.0, 08/00, page 314 of 890
HITACHI

doublelogl0(double d)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Computes the base-ten logarithm of a floating-point number.
<math.h>

Normal: Base-ten logarithm of d

Abnormal: In case of domain error: Returns not-a-number.

d Floating-point number for which base-ten logarithm isto be
computed

#i ncl ude <mat h. h>
doubl e d, ret;
ret=l ogl0(d);

A domain error occursif d is negative.
A range error occursif d is0.0.

double modf(double a, double*b)

Description:
Header file:

Return values:

Parameters:

Example:

Breaks a floating-point number into integral and fractional parts.

<math.h>

Normal: Fractional part of a

Abnormal: O

a Floating-point number to be broken into integral and fractional
parts

b Pointer indicating storage area that stores integral part

#i ncl ude <mat h. h>
double a, *b, ret;
ret =nodf (a, b);

Rev. 1.0, 08/00, page 315 of 890
HITACHI

double pow(double x, doubley)

Description: Computes a power of floating-point number.
Header file: <math.h>

Returnvalues: Normal: Value of x raised to the power y

Abnormal: In case of domain error: Returns not-a-number.

Parameters: X Value to be raised to a power
y Power value
Example: #i ncl ude <math. h>
double x, vy, ret;
ret=pow(x, y);

Error conditions:
A domain error occursif x is0.0and y is0.0 or less, or if x isnegative and y
isnot an integer.

double sgrt(double d)

Description: Computes the positive square root of afloating-point number.

Header file: <math.h>

Returnvalues:. Normal: Positive square root of d

Abnormal: In case of domain error: Returns not-a-number.

Parameters: d Floating-point number for which positive square root isto
be computed
Example: #i ncl ude <math. h>

doubl e d, ret;
ret=sqrt(d);

Error conditions:
A domain error occursif d is negative.

Rev. 1.0, 08/00, page 316 of 890
HITACHI

double ceil(double d)

Description: Returns the smallest integral value not less than or equal to the given floating-
point number.

Header file: <math.h>

Returnvalues: Normal: Smallest integral value not less than or eaual to d
Abnormal: O
Parameters: d Floating-point number for which smallest integral value not less

than that number is to be computed

Example: #i ncl ude <math. h>
doubl e d, ret;
ret=ceil (d);
Remarks: The ceil function returns the smallest integral value not less than or equal to d,

expressed asadouble. Therefore, if d is negative, the value after truncation of
the fractional part is returned.

double fabs(double d)
Description: Computes the absolute value of afloating-point number.

Header file: <math.h>

Returnvalues: Normal: Absolute value of d

Abnormal: O
Parameters: d Floating-point number for which absolute value isto be computed
Example: #i ncl ude <math. h>

doubl e d, ret;
ret =fabs(d);

Rev. 1.0, 08/00, page 317 of 890
HITACHI

double floor (double d)

Description: Returns the largest integral value not greater than or equal to the given floating-
point number.

Header file: <math.h>

Returnvalues: Normal: Largest integral value not greater than or equal tod
Abnormal: O
Parameters: d Floating-point number for which largest integral value not greater

than that number is to be computed

Example: #i ncl ude <math. h>
doubl e d, ret;
ret=floor(d);

Remarks: The floor function returns the largest integral value not greater than or equal to
d, expressed as adouble. Therefore, if d isnegative, the value after rounding-up
of the fractional part is returned.

Rev. 1.0, 08/00, page 318 of 890
HITACHI

double fmod(double x, doubley)

Description: Computes the floating-point remainder of division of two floating-point
numbers.

Header file: <math.h>

Returnvalues:. Normal: Wheny is0.0: x
When'y isnot 0.0: Remainder of division of x by y
Abnormal: [
Parameters: X Dividend
y Divisor
Example: #i ncl ude <mat h. h>

double x, vy, ret;
ret=frod(x, vy);

Remarks: In the fmod function, the relationship between parameters x and y and return
valueret isasfollows:

X =y * | +ret (wherel isan integer)
The sign of return value ret isthe same as the sign of x.

If the quotient of x/y cannot be expressed, the value of the result will not be
guaranteed.

Rev. 1.0, 08/00, page 319 of 890
HITACHI

<mathf.h>

Performs various mathematical operations.

<mathf.h> declares mathematical functions and defines macrosin single-precision format. The
mathematical functions and macros used here are does not follow the ANSI specifications. Each
function receives a fl oat-type parameter and returns a float-type value.

The following constants (macros) are all implementation-defined.

Type Definition Name Description

Constant EDOM
(macro)

Indicates the value to be set in errno if the value of an parameter input
to a function is outside the range of values defined in the function.

ERANGE

Indicates the value to be set in errno if the result of a function cannot
be represented as a float type value, or if overflow or underflow occurs.

HUGE_VAL

Indicates the value for the function return value if the result of a
function overflows.

Function acosf

Computes the arc cosine of a floating-point number.

asinf Computes the arc sine of a floating-point number.

atanf Computes the arc tangent of a floating-point number.

atan2f Computes the arc tangent of the result of a division of two floating-
point numbers.

cosf Computes the cosine of a floating-point radian value.

sinf Computes the sine of a floating-point radian value.

tanf Computes the tangent of a floating-point radian value.

coshf Computes the hyperbolic cosine of a floating-point number.

sinhf Computes the hyperbolic sine of a floating-point number.

tanhf Computes the hyperbolic tangent of a floating-point number.

expf Computes the exponential function of a floating-point number.

frexpf Breaks a floating-point number into a [0.5, 1.0) value and a power of 2.

Idexpf Multiplies a floating-point number by a power of 2.

logf Computes the natural logarithm of a floating-point number.

log10f Computes the base-ten logarithm of a floating-point number.

modff Breaks a floating-point number into integral and fractional parts.

powf Computes a power of a floating-point number.

sqrtf Computes the positive square root of a floating-point number.

ceilf Computes the smallest integral value not less than or equal to the

given floating-point number.

Rev. 1.0, 08/00, page 320 of 890

HITACHI

Type Definition Name Description

Function fabsf Computes the absolute value of a floating-point number.
floorf Computes the largest integral value not greater than or equal to the
given floating-point number.
fmodf Computes the floating-point remainder of division of two floating-point
numbers.

Operation in the event of an error is described below.

1. Domain error
A domain error occurs if the value of a parameter input to afunction is outside the domain
over which the mathematical function is defined. In this case, the value of EDOM issetin
errno. The function return value depends on the compiler.

2. Range error
A range error occursif the result of afunction cannot be represented as a float type value. In
this case, the value of ERANGE isset in errno. If the result overflows, the function returns
the value of HUGE_V AL, with the same sign as the correct value of the function. If the result
underflows, 0 is returned as the return value.

Notes

1. If thereisapossibility of adomain error resulting from a <mathf.h> function call, it is
dangerous to use the resultant value directly. The value of errno should always be checked
before using the result in such cases.

Example:

1 x=asinf(a);

2 i f (errno==EDOM

3 printf ("error\n");

4 else

5 printf ("result is : %\n",Xx);

Rev. 1.0, 08/00, page 321 of 890
HITACHI

Inline 1, the arc sine value is computed using the asinf function. If the value of parameter ais
outside the domain of the asinf function [-1.0, 1.0], the EDOM valueissetinerrno. Line?2
determines whether adomain error has occurred. If adomain error has occurred, error is output
inline 3. If thereis no domain error, the arc sine value isoutput in line 5.

2. Whether or not arange error occurs depends on the internal representation format of floating-
point number determined by the compiler. For example, if an internal representation format
that allows infinity to be represented as avalue is used, <mathf.h> library functions can be
implemented without causing range errors.

3. Inthefollowing cases, errno will not be set by the fabs and sgrt function even though an error
has occrred in the function.

(1) cpu=sh3e option is specified.
(2) cpu=sh4 option is specified.
(3) cpu=sh2e option is specified (only fabsf function).

Implementation Define

Item Compiler Specifications

Value returned by a mathematical function A not-a-number is returned. For details on the format of
if an input parameter is out of the range not-a-numbers, refer to section 10.1.3, Floating-Point
Number Specifications.

Whether errno is set to the value of macro Not specified
ERANGE if an underflow error occurs in a
mathematical function

Whether a range error occurs if the An range error occurs.
second argument in the fmod function is O

Rev. 1.0, 08/00, page 322 of 890
HITACHI

float acosf(float f)
Description: Computes the arc cosine of afloating-point number.
Header file: <mathf.h>
Returnvalues: Normal: Arc cosine of f
Abnormal: In case of domain error: Returns not-a-number.
Parameters: f Floating-point number for which arc cosine isto be computed

Example: #i ncl ude <mat hf. h>
float f, ret;
ret =acosf (f);

Error conditions:
A domain error occurs for avalue of f not in therange[-1.0, +1.0].

Remarks: The acosf function returns the arc cosine in the range [0, T by the radian.

float asinf(float f)
Description: Computes the arc sine of afloating-point number.
Header file: <mathf.h>
Returnvalues: Normal: Arcsineof f
Abnormal: In case of domain error: Returns not-a-number.
Parameters: f Floating-point number for which arc sineisto be computed

Example: #i ncl ude <mat hf. h>
float f, ret;
ret=asinf(f);

Error conditions:
A domain error occurs for avalue of f not in the range [-1.0, +1.0].

Remarks: The asinf function returns the arc sine in the range [-172, +172] by the radian.

Rev. 1.0, 08/00, page 323 of 890

HITACHI

float atanf(float f)
Description: Computes the arc tangent of afloating-point number.

Header file: <mathf.h>

Returnvalues: Normal: Arc tangent of f

Abnorma: 0O
Parameters: f Floating-point number for which arc tangent is to be computed
Example: #i ncl ude <mat hf. h>

float f, ret;
ret=atanf (f);

Remarks: The atanf function returns the arc tangent in the range (—1v2, +172) by the
radian.

Rev. 1.0, 08/00, page 324 of 890
HITACHI

float atan2f(float y, float x)

Description: Computes the arc tangent of the division of two floating-point numbers.

Header file: <mathf.h>
Returnvalues: Normal: Arc tangent value when y is divided by x

Abnormal: In case of domain error: Returns not-a-number.

Parameters: X Divisor
y Dividend
Example: #i ncl ude <mat hf. h>

float x, y, ret;
ret=atan2f (y, x);

Error conditions:
A domain error occurs if the values of both x and y are 0.0.

Remarks: The atan2f function returns the arc tangent in the range (-1, +11 by the radian.
The meaning of the atan2f function isillustrated in figure 10.6. Asshown in the
figure, the result of the atan2f function is the angle between the X-axisand a
straight line passing through the origin and point (X, y).

If y =0.0 and x is negative, theresult isTt If x = 0.0, theresult is+172,
depending on whether y is positive or negative.

(%, y)

/

X

L atan2f (y, x)

Figure 10.6 Meaning of atan2f Function

Rev. 1.0, 08/00, page 325 of 890
HITACHI

float cosf(float f)
Description: Computes the cosine of afloating-point radian value.

Header file: <mathf.h>

Returnvalues: Normal: Cosine of f

Abnorma: 0O
Parameters: f Radian value for which cosineisto be computed
Example: #i ncl ude <mat hf. h>

float f, ret;
ret=cosf (f);

float sinf(float f)
Description: Computes the sine of afloating-point radian value.

Header file: <mathf.h>

Returnvalues:. Normal: Sine of f
Abnormal: 0O
Parameters: f Radian value for which sine is to be computed
Example: #i ncl ude <mat hf. h>
float f, ret;
ret=sinf(f);

Rev. 1.0, 08/00, page 326 of 890
HITACHI

float tanf(float f)
Description: Computes the tangent of a floating-point radian value.

Header file: <mathf.h>

Returnvalues: Normal: Tangent of f

Abnorma: 0O
Parameters: f Radian value for which tangent is to be computed
Example: #i ncl ude <mat hf. h>

float f, ret;
ret=tanf(f);

float coshf(float f)
Description: Computes the hyperbolic cosine of afloating-point number.

Header file: <mathf.h>

Returnvalues. Normal: Hyperbolic cosine of f
Abnorma: 0O
Parameters: f Floating-point number for which hyperbolic cosineisto be
computed
Example: #i ncl ude <mat hf. h>

float f, ret;
ret=coshf (f);

Rev. 1.0, 08/00, page 327 of 890
HITACHI

float sinhf(float f)
Description: Computes the hyperbolic sine of a floating-point number.

Header file: <mathf.h>

Returnvalues: Normal: Hyperbolic sine of f
Abnorma: 0O
Parameters: f Floating-point number for which hyperbolic sineisto be
computed
Example: #i ncl ude <mat hf. h>

float f, ret;
ret=sinhf(f);

float tanhf(float f)
Description: Computes the hyperbolic tangent of a floating-point number.

Header file: <mathf.h>

Returnvalues: Normal: Hyperbolic tangent of f
Abnorma: 0O
Parameters: f Floating-point number for which hyperbolic tangent isto be
computed
Example: #i ncl ude <mat hf. h>

float f, ret;
ret=tanhf (f);

Rev. 1.0, 08/00, page 328 of 890
HITACHI

float expf(float f)
Description: Computes the exponential function of a floating-point number.

Header file: <mathf.h>

Returnvalues: Normal: Exponential value of f
Abnorma: 0O
Parameters: f Floating-point number for which exponential function isto be
computed
Example: #i ncl ude <mat hf. h>

float f, ret;
ret =expf (f);

float frexpf(float value, float int *¢€)
Description: Breaks a floating-point number into a[0.5, 1.0] value and a power of 2.
Header file: <mathf.h>

Return values:. Normal: If valueis0.0: 0.0

If valueis not 0.0: Value of ret defined by
ret * vauepointedtoby e = gl ye

Abnormal: O
Parameters: value Floating-point number to be broken into a[0.5, 1.0) value
and a power of 2
e Pointer to storage area that holds power-of-2 value
Example: #i ncl ude <mat hf. h>
float ret, value;
int *e

ret =frexpf(val ue, e);

Remarks: The frexpf function breaks valueinto a[0.5, 1.0) value and a power of 2. It
stores the resultant power-of-2 value in the area pointed to by e.

The frexp function returns the return valueret in therange [0.5, 1.0) or as 0.0.

If value is 0.0, the contents of the int storage area pointed to by e and the value
of ret are both 0.0.

Rev. 1.0, 08/00, page 329 of 890
HITACHI

float Idexpf (float ret, int f)
Description: Multiplies a floating-point number by a power of 2.

Header file: <mathf.h>

Returnvalues: Normal: Result of e* 2f operation
Abnorma: 0O
Parameters: e Floating-point number to be multiplied by a power of 2
f Power-of-2 value
Example: #i ncl ude <mat hf. h>
float ret, e;
int f;

ret=i dexpf(e, f);

float logf(float f)

Description: Computes the natural logarithm of a floating-point number.
Header file: <mathf.h>

Returnvalues: Normal: Natural logarithm of f

Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which natural logarithm isto be
computed
Example: #i ncl ude <mat hf. h>
float f, ret;
ret=logf (f);

Error conditions:
A domain error occursif f is negative.
A range error occursif f is0.0.

Rev. 1.0, 08/00, page 330 of 890
HITACHI

float log10f(float f)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Computes the base-ten logarithm of a floating-point number.
<mathf.h>

Normal: Base-ten logarithm of f

Abnormal: In case of domain error: Returns not-a-number.

f Floating-point number for which base-ten logarithm isto be
computed

#i ncl ude <mat hf. h>
float f, ret;
ret=l oglof (f);

A domain error occursif f is negative.
A range error occursif f is0.0.

float modff(float a, float *b)

Description:
Header file:

Return values:

Parameters:

Example:

Breaks a floating-point number into integral and fractional parts.

<mathf.h>

Normal: Fractional part of a

Abnormal: O

a Floating-point number to be broken into integral and fractional
parts

b Pointer indicating storage area that stores integral part

#i ncl ude <mat hf. h>
float a, *b, ret;
ret=nmodff(a, b);

Rev. 1.0, 08/00, page 331 of 890
HITACHI

float powf(float x, float y)

Description: Computes a power of a floating-point number.
Header file: <mathf.h>

Returnvalues: Normal: Value of x raised to the power y

Abnormal: In case of domain error: Returns not-a-number.

Parameters: X Value to be raised to a power
y Power value
Example: #i ncl ude <mat hf. h>

float x, y, ret;
ret=powf (x, vy);

Error conditions:
A domain error occursif x is0.0and y is0.0 or less, or if x isnegative and y
isnot an integer.

float sqrtf(float f)

Description: Computes the positive square root of afloating-point number.
Header file: <mathf.h>

Returnvalues: Normal: Positive square root of f

Abnormal: In case of domain error: Returns not-a-number.

Parameters: f Floating-point number for which positive square root isto
be computed
Example: #i ncl ude <mat hf. h>

float f, ret;
ret=sqgrtf(x, y);

Error conditions:
A domain error occursif f is negative.

Rev. 1.0, 08/00, page 332 of 890
HITACHI

float ceilf(float f)

Description:

Header file:

Return values:

Parameters:

Example:

Remarks:

Returns the smallest integral value not less than or equal to the given floating-
point number.

<mathf.h>

Normal: Smallest integral value not less than or equal to f

Abnormal: O

f Floating-point number for which smallest integral value not less

than that number is to be computed

#i ncl ude <mat hf. h>
float f, ret;
ret=ceil f(f);

The ceilf function returns the smallest integral value not less than or equal tof,
expressed asafloat. Therefore, if f is negative, the value after truncation of the
fractional part is returned.

float fabsf(float f)

Description:
Header file:

Return values:

Parameters:

Example:

Computes the absolute value of afloating-point number.

<mathf.h>

Normal: Absolute value of f

Abnormal: O

f Floating-point number for which absolute value isto be computed

#i ncl ude <mat hf. h>
float f, ret;
ret =f absf (f);

Rev. 1.0, 08/00, page 333 of 890
HITACHI

float floorf(float f)

Description: Returns the largest integral value not greater than or equal to the given floating-
point number.

Header file: <mathf.h>

Returnvalues: Normal: Largest integral value not greater than or equal to f
Abnormal: O
Parameters: f Floating-point number for which largest integral value not greater

than that number is to be computed

Example: #i ncl ude <mat hf. h>
float f, ret;
ret=floorf(f);

Remarks: The floor function returns the largest integral value not greater than or equal to
f, expressed as afloat. Therefore, if f is negative, the value after rounding-up of
the fractional part is returned.

Rev. 1.0, 08/00, page 334 of 890
HITACHI

float fmodf(float x, float y)

Description: Computes the floating-point remainder of division of two floating-point
numbers.

Header file: <mathf.h>

Returnvalues:. Normal: Wheny is0.0: x
When 'y isnot 0.0: Remainder of division of x by y
Abnormal: O
Parameters: X Dividend
y Divisor
Example: #i ncl ude <mat hf. h>

float x, y, ret;
ret=fnodf (x, y);

Remarks: In the fmodf function, the relationship between parameters x and y and return
valueret isasfollows:

X =y *i+ret (wherei isaninteger)
The sign of return value ret isthe same as the sign of x.

If the quotient of x/y cannot be expressed, the value of the result will not be
guaranteed.

Rev. 1.0, 08/00, page 335 of 890
HITACHI

<setjmp.h>
Supports transfer of control between functions.

The following macros are implementati on-defined.

Type Definition Name Description

Type jmp_buf Indicates the type name corresponding to a storage area for storing
(macro) information that enables transfer of control between functions.
Function setjmp Saves the executing environment defined by jmp_buf of the currently

executing function in the specified storage area.

longjmp Restores the function executing environment saved by the setjmp
function, and transfers control to the program location at which the
setjmp function was called.

The setjmp function saves the executing environment of the current function. The location in the
program that called the setjmp function can subsequently be returned to by calling the longjmp
function. An example of how transfer of control between functions is supported using the setjmp
and longjmp functions is shown below.

Rev. 1.0, 08/00, page 336 of 890
HITACHI

Example:

1 #i ncl ude <stdio. h>
2 #i ncl ude <setjnp. h>
3 j mp_buf env;
4 void main()
5 {
6
7
8 if (setjnp(env)!=0){
9 printf("return fromlongjnp\n");
10 exit(0);
11 }
12 sub();
13}
14
15 voi d sub()
16 {
17 printf("subroutine is running \n");
18 | ongj mp(env, 1);
19 }
Explanation

The setjmp functioniscalled in line 8. At thistime, the environment in which the setjmp
function was called is saved in jmp_buf type variable env. The return valuein thiscaseis 0, and
therefore function sub is called next.

The environment saved in variable env is restored by the longj mp function called within function
sub. Asaresult, the program behavesjust asif areturn had been made from the setjmp function
inline 8. However, the return value at thistimeis 1 specified by the second parameter of the
longjmp function. Asaresult, execution proceeds from line 9.

Rev. 1.0, 08/00, page 337 of 890
HITACHI

int setjmp(jmp_buf env)

Description: Saves the executing environment of the currently executing function in the
specified storage area.

Header file: <setjmp.h>

Returnvalues:. Normal: When setjmp function iscalled: 0
On return from longjmp function: Nonzero
Abnormal: [
Parameters: env Pointer to storage areain which executing environment isto be
saved
Example: #i ncl ude <setjnp. h>
int ret;
j mp_buf env;

ret=setjnp(env);

Remarks: The executing environment saved by the setjmp function is used by the
longjmp function. The return value is 0 when the function is called as the
setjmp function, but the return value on return from the longjmp function is the
value of the second parameter specified by the longjmp function.

If the setjmp function is called from a complex expression, part of the current
executing environment, such as the intermediate result of expression evaluation,
may belost. The setjmp function should only used in the form of a comparison
between the result of the setjmp function and a constant expression, and should
not be called within a complex expression.

Rev. 1.0, 08/00, page 338 of 890
HITACHI

void longjmp(jmp_buf env, int ret)

Description: Restores the function executing environment saved by the setjmp function, and
transfers control to the program location at which the setjmp function was
called.

Header file: <setjmp.h>

Parameters: env Pointer to storage areain which executing environment was saved
ret Return code to setjmp function

Example: #i ncl ude <setjnp. h>
int ret;
j mp_buf env;

| ongj np(env, ret);

Remarks: The longjmp function restores from the storage area specified by env the
function executing environment saved by the most recent invocation of the
setjmp function in the same program, and transfers control to the program
location at which that setjmp function was called. The value of longijmp
function parameter ret is returned as the setjmp function return value.
However, if ret is 0O, the value 1 is returned to the setjmp function as areturn
value.

If the setjmp function has not been called, or if the function that called the
setjmp function has already executed a return statement, the operation of the
longjmp function will not be guaranteed.

Rev. 1.0, 08/00, page 339 of 890
HITACHI

<stdarg.h>
Enables referencing of variable arguments for functions with such arguments.

The following macros are implementati on-defined.

Type Definition Name Description
Type va_list Indicates the types of variables used in common by the va_start,
(macro) va_arg, and va_end macros in order to reference variable parameters.
Function va_start Executes initialization processing for performing variable parameter
(macro) referencing.
va_arg Enables referencing of the argument following the argument currently
being referenced for a function with variable parameters.
va_end Terminates referencing of the arguments of a function with variable
parameters.

An example of a program using the macros defined by this standard include file is shown below.

Rev. 1.0, 08/00, page 340 of 890
HITACHI

Example:

1 #include <stdio.h>
2 #i ncl ude <stdarg. h>
3
4 extern void prlist(int count, ...);
5
6 void main()
7 A
8 prlist(1l, 1);
9 prlist(3, 4, 5, 6);
10 prlist(5, 1, 2, 3, 4, 5);
11}
12
13 void prlist(int count, ...)
14 {
15 va_list ap
16 int i;
17
18 va_start(ap, count);
19 for(i=0; i<count; i++)
20 printf("%", va_arg(ap, int));
21 putchar('\n");
22 va_end(ap);
23 }
Explanation

In this example, the number of dataitems to be output is specified in the first parameter, and
function prlist isimplemented, outputting that number of subsequent parameters.

In line 18, the variable parameter referenceisinitialized by va_start. Each time an parameter is
output, the next parameter is referenced by the va_arg macro (line 20). Inthe va_arg macro, the
type name of the parameter (in this case, int type) is specified in the second parameter.

When parameter referencing ends, the va_end macro is called (line 22).

Rev. 1.0, 08/00, page 341 of 890
HITACHI

void va_start(va_list, parmN)

Description:

Header file:

Parameters:

Example:

Remarks:

Executesinitialization processing for referencing variable parameters.

<stdarg.h>
ap Variable for accessing variable parameters
parmN Identifier of rightmost argument

#i ncl ude <stdarg. h>
va_list(int count, ...)
{
va_list ap;
va_start(ap, count);

}

Theva_start macro initializes ap for subsequent use by theva_arg and va_end
macros.

The parameter parmN isthe identifier of the rightmost parameter in the
parameter list in the external function definition (the one just beforethe, ...).

To reference a function with no variable name, the va_start macro call must be
executed first of al.

Rev. 1.0, 08/00, page 342 of 890

HITACHI

typeva arg(va list ap, type)

Description:

Header file:

Return values:

Parameters:

Example:

Remarks:

Enables referencing of the parameter following the parameter currently being
referenced for afunction with variable parameters.

<stdarg.h>

Normal: Parameter value

Abnormal: O

ap Variable for accessing variable parameters
type Type of parameter to be accessed

#i ncl ude <stdarg. h>
va_list ap;
type ret;

ret=va_arg(ap, type);

A variable of the va_list typeinitialized by the va_start macro is specified in
the first parameter. The value of ap is updated each time va_argisused, and as
aresult variable parameters are returned sequentialy as return values of this
macro.

Specify the type of the argument to be referenced at the type location in the
calling procedure.

The ap parameter must be the same as the ap initialized by va_start.

It will not be possible to reference the parameters correctly if atype for which
the size is changed by type conversion is specified when char type, unsigned
char type, short type, unsigned short type, or float type in the function parameter
is specified as the type of type. If thiskind of typeis specified, operation will
not be guaranteed.

Rev. 1.0, 08/00, page 343 of 890
HITACHI

void va_end(va list ap)

Description:

Header file:
Parameters:

Example:

Remarks:

Terminates referencing of the parameters of a function with variable arguments.

<stdarg.h>

ap Variable for accessing variable parameters

#i ncl ude <stdarg. h>
va_list ap;
va_end(ap);

The ap parameter must be the same asthe ap initialized by va_start. If the

va_end macro is not called before the return from a function, the operation of
that function will not be guaranteed.

Rev. 1.0, 08/00, page 344 of 890

HITACHI

<stdio.h>

Performs processing relating to input/output of stream input/output file.

The following macros are all implementation-defined.

Type Definition Name Description

Constant FILE
(macro)

Indicates a structure type that stores various control information
including a pointer to the buffer (required for stream input/output
processing), an error indicator, and an end-of-file indicator.

_IOFBF Indicates full buffering of input/output as the buffer area usage method.

_IOLBF Indicates line buffering of input/output as the buffer area usage
method.

_IONBF Indicates non-buffering of input/output as the buffer area usage
method.

BUFSIZ Indicates the buffer size required for input/output processing.

EOF Indicates end-of-file, that is, no more input from a file.

L_tmpnam Indicates the size of an array large enough to store a string literal of a
temporary file name generated by the tmpnam function.

SEEK_CUR Indicates a shift of the current file read/write position to an offset from
the current position.

SEEK_END Indicates a shift of the current file read/write position to an offset from
the end-of-file position.

SEEK_SET Indicates a shift of the current file read/write position to an offset from
the beginning of the file.

SYS_OPEN Indicates the number of files for which simultaneous opening is
guaranteed by the implementation.

TMP_MAX Indicates the minimum number of unique file names that shall be
generated by the tmpnam function.

stderr Indicates the file pointer for the standard error file.

stdin Indicates the file pointer for the standard input file.

stdout Indicates the file pointer for the standard output file.

Function fclose

Closes a stream input/output file.

fflush Outputs stream input/output file buffer contents to the file.
fopen Opens a stream input/output file under the specified file name.
freopen Closes a currently open stream input/output file and reopens a new file

under the specified file name.

Rev. 1.0, 08/00, page 345 of 890
HITACHI

Type Definition Name Description

Function setbuf

Defines and sets a stream input/output buffer area on the user
program side.

setvbuf

Defines and sets a stream input/output buffer area on the user
program side.

fprintf

Outputs data to a stream input/output file according to a format.

fscanf

Inputs data from a stream input/output file and converts it according to
a format.

printf

Converts data according to a format and outputs it to the standard
output file (stdout).

scanf

Inputs data from the standard input file (stdin) and converts it
according to a format.

sprintf

Converts data according to a format and outputs it to the specified
area.

sscanf

Inputs data from the specified storage area and converts it according
to a format.

vfprintf

Outputs a variable parameter list to the specified stream input/output
file according to a format.

vprintf

Outputs a variable parameter list to the standard output file (stdout)
according to a format.

vsprintf

Outputs a variable parameter list to the specified area according to a
format.

fgetc

Inputs one character from a stream input/output file.

fgets

Inputs a string from a stream input/output file.

fputc

Outputs one character to a stream input/output file.

fputs

Outputs a string to a stream input/output file.

getc

(macro) Inputs one character from a stream input/output file.

getchar

(macro) Inputs one character from the standard input file.

gets

Inputs a string from the standard input file.

putc

(macro) Outputs one character to a stream input/output file.

putchar

(macro) Outputs one character to the standard output file.

puts

Outputs a string to the standard output file.

ungetc

Returns one character to a stream input/output file.

fread

Inputs data from a stream input/output file to the specified storage
area.

fwrite

Outputs data from a storage area to a stream input/output file.

fseek

Shifts the current read/write position in a stream input/output file.

Rev. 1.0, 08/00, page 346 of 890

HITACHI

Type Definition Name Description

Function ftell Computes the current read/write position in a stream input/output file.
rewind Shifts the current read/write position in a stream input/output file to the
beginning of the file.
clearerr Clears the error state of a stream input/output file.
feof Tests for the end of a stream input/output file.
ferror Tests for stream input/output file error state.
perror Outputs an error message corresponding to the error number to the

standard error file (stderr).

Rev. 1.0, 08/00, page 347 of 890
HITACHI

Specification Defined by the Implementation
Iltem

Compiler Specifications

Whether the last line of the input text requires a
line feed character indicating end

Whether the blank characters written
immediately before the carriage return character
are read

Number of null characters added to data written
in the binary file

Initial value of file position specifier in the
addition mode

Is a file data lost following text file input?

File buffering specifications

Whether a file with file length 0 exists

File name configuration rule

Whether the same file is opened simultaneously

Not specified. Depends on the low-level
interface routine specifications.

Output format of the %p format conversion in
the fprintf function

Hexadecimal representation.

Input data representation of the %p format
conversion in the fscanf function.

The meaning of conversion character ‘= in the
fscanf function

Hexadecimal representation.

If ‘~" is not the first or last character or ‘-’ does
not follow V', the compiler indicates the previous
character and following characters.

Value of errno specified by the fgetpos or ftell
function

The fgetpos function is not supported.

The ftell function does not specify the errno
value. The errno value depends on the low-
level interface routine specifications.

Output format of messages generated by the
perror function

See (a) below for the output message format.

calloc, malloc, or realloc function operation
when the size is 0.

The 0-byte area is allocated.

(a) The output format of perror functionis

<string literal>:<error message for the error number specified in error>
(b) Table 10.32 shows the format when displaying the infinite of floating points and not-a-

numbersin printf and fprintf functions.

Rev. 1.0, 08/00, page 348 of 890

HITACHI

Table 10.32 Display Format of Infinite and Not-a-Numbers

Value Display Format

Infinite of positive number ++++++

Infinite of negative number —eeee-

Not-a-number Fekkhkk

An example of aprogram that performs a series of input/output processing operations for a stream
input/output fileis shown in the following.

Rev. 1.0, 08/00, page 349 of 890
HITACHI

Example

1 #include <stdio.h>
2
3 void main()
4 {
5 int c;
6 FILE *ifp, *ofp;
7
8 if ((ifp=fopen("!INPUT. DAT", "r"))==NULL) {
9 fprintf(stderr,"cannot open input file\n");
10 exit(1);
11 }
12 i f ((of p=fopen("OUTPUT. DAT", "W"'))==NULL) {
13 fprintf(stderr,"cannot open output file\n");
14 exit(1);
15 }
16 while ((c=getc(ifp))!=EOF)
17 putc(c, ofp);
18 fclose(ifp);
19 fcl ose(of p);
20 }
Explanation

This program copies the contents of file INPUT.DAT to file OUTPUT.DAT.

Input file INPUT.DAT is opened by the fopen function in line 8, and output file OUTPUT.DAT is
opened by the fopen function in line 12. If opening fails, NULL isreturned as the return value of
the fopen function, an error message is output, and the program is terminated.

If the fopen function ends normally, pointers to the data (FILE type) that stores information on the
opened filesis returned; these are set in variables ifp and ofp.

After successful opening, input/output is performed using these FILE type data.

When file processing ends, the files are closed with the fclose function.

Rev. 1.0, 08/00, page 350 of 890
HITACHI

int fclose(FILE *fp)

Description: Closes a stream input/output file.
Header file: <stdio.h>

Returnvalues: Normal: 0

Abnormal: Nonzero

Parameters: fp File pointer
Example: #i ncl ude <stdio. h>
FI LE *f p;
int ret;

ret=fcl ose(fp);

Remarks: The fclose function closes the stream input/output file indicated by file pointer

fp.

If the output file of the stream input/output file is open and data that is not
output remainsin the buffer, that datais output to the file before it is closed.

If the input/output buffer was automatically allocated by the system, it is

cancelled.

HITACHI

Rev. 1.0, 08/00, page 351 of 890

int fflush(FILE *fp)

Description: Outputs stream input/output file buffer contents to the file.
Header file: <stdio.h>

Returnvalues: Normal: 0

Abnormal: Nonzero

Parameters: fp File pointer
Example: #i ncl ude <stdio. h>
FI LE *f p;
int ret;

ret=fflush(fp);

Remarks: When an output file of the stream input/output file is open, the fflush function
outputs the contents of the buffer that is not output for the stream input/output
file specified by file pointer fp to thefile. When an input fileis open, the
ungetc function specification isinvalid.

Rev. 1.0, 08/00, page 352 of 890
HITACHI

FILE *fopen(const char *fname, const char *mode)

Description:
Header file:

Return values:

Parameters:

Example:

Remarks:

Opens a stream input/output file under the specified file name.
<stdio.h>

Normal: File pointer indicating file information on opened file
Abnormal: NULL

fname Pointer to string indicating file name
mode Pointer to string indicating file access mode

#i ncl ude <stdi o. h>

FILE *ret;

const char *fnane, *node;
ret =f open(f name, node);

The fopen function opens the stream input/output file whose file name is the
string pointed to by fname. If afile that does not exist is opened in write mode
or addition mode, anew fileis created wherever possible. When an existing file
is opened in write mode, writing processing is performed from the beginning of
thefile, and previously written file contents are erased.

When afile is opened in addition mode, write processing is performed from the
end-of-file position. When afileis opened in update mode, both input and
output processing can be performed on the file. However, input cannot directly
follow output without intervening execution of the fflush, fseek, or rewind
function. Similarly, output cannot directly follow input without intervening
execution of the fflush, fseek, or rewind function.

A string indicating the opening method may be added after the string indicating
the file access mode.

Rev. 1.0, 08/00, page 353 of 890
HITACHI

FILE *freopen(const char *fname, const char *mode, FILE *fp)

Description: Closes a currently open stream input/output file and reopens a new file under
the specified file name.

Header file: <stdio.h>
Returnvalues: Normal: fp

Abnormal: NULL

Parameters: fname Pointer to string indicating new file name

mode Pointer to string indicating file access mode

fp File pointer of currently open stream input/output file
Example: #i ncl ude <stdio. h>

const char *fnanme, *node;
FILE *ret, *fp;
ret =freopen(fname, node, fp);

Remarks: The freopen function first closes the stream input/output file indicated by file
pointer fp (the following processing is carried out even if this close processing is
unsuccessful). Next, the freopen function opens the file indicated by file name
fname for stream input/output, reusing the FILE structure pointed to by fp.

The freopen function is useful when thereis alimit on the number of files being
opened at one time.

The freopen function normally returns the same value as fp, but returns NUL L
when an error occurs.

Rev. 1.0, 08/00, page 354 of 890
HITACHI

void setbuf (FILE *fp, char buf[BUFSIZ])

Description:

Header file:

Parameters:

Example:

Remarks:

Defines and sets a stream input/output buffer area by the user program.

<stdio.h>
fp File pointer
buf Pointer to buffer area

#i ncl ude <stdi o. h>

FI LE *fp;

char buf[BUFSI Z] ;
set buf (fp, buf);

The setbuf function defines the storage area pointed to by buf so that it can be
used as an input/output buffer area for the stream input/output file indicated by
file pointer fp. Asaresult, input/output processing is performed using a buffer
areaof size BUFSIZ.

Rev. 1.0, 08/00, page 355 of 890
HITACHI

int setvbuf(FILE *fp, char *buf, int type, size t size)

Description: Defines and sets a stream input/output buffer area by the user program.
Header file: <stdio.h>

Returnvalues: Normal: 0

Abnormal: Nonzero

Parameters: fp File pointer
buf Pointer to buffer area
type Buffer management method
size Size of buffer area
Example: #i ncl ude <stdi o. h>
FI LE *fp;
char *buf;

int type, ret;
size_t size;
ret=setvbuf (fp, buf, type, size);

Remarks: The setvbuf function defines the storage area pointed to by buf so that it can be
used as an input/output buffer area for the stream input/output file indicated by
file pointer fp.

Rev. 1.0, 08/00, page 356 of 890
HITACHI

There are three ways of using this buffer area, as follows:

)

@)

©)

When |OFBF is specified astype
Input/output is fully buffered.

When |OLBF is specified astype

Input/output is line buffered. That is,
input/output datais fetched from the buffer area
when a new-line character is written, when the
buffer areaisfull, or when input is requested.

When _IONBF is specified astype
Input/output is unbuffered.

The setvbuf function usually returns O.
However, when anillegal valueis specified for
type or size, or when the request on how to use
the buffer could not be accepted, a value other
than O is returned.

The buffer area must not be released before the opened stream input/output file
isclosed. Also, the setvbuf function must be used between opening of the
stream input/output file and execution of input/output processing,

Rev. 1.0, 08/00, page 357 of 890

HITACHI

int fprintf(FILE *fp, const char *control[, arg...])

Description: Outputs data to a stream input/output file according to the format.
Header file: <stdio.h>

Returnvalues: Normal: Number of characters converted and output

Abnormal: Negative value

Parameters: fp File pointer

control Pointer to string indicating format

arg,... List of data to be output according to format
Example: #i ncl ude <stdio. h>

FI LE *f p;

const char *control;

int ret;

char buffer[]="Hello World\n”
ret=fprintf(fp, control, buffer);

Remarks: The fprintf function converts and edits argument arg according to the string that
indicates the format pointed to by control, and outputs the result to the stream
input/output file indicated by file pointer fp.

The fprintf function returns the number of characters converted and output
when the function is terminated successfully, or anegative valueif an error
OCCurs.

The format specifications are shown below.

(1) Overview of formats

The string literal that represents the format is made up of two kinds of string.
(8 Ordinary characters

A character other than a conversion specification shown in (b) is output
unchanged.

(b) Conversion specifications
A conversion specification is a string beginning with % that specifiesthe

conversion method for the following argument. The conversion
specifications format conforms to the following rules:

Rev. 1.0, 08/00, page 358 of 890
HITACHI

[*] N . S . .
% [Flag]l [Field width] ”:_l [Precision] :|[Parameter size specification] Conversion string

When there is no parameter to be actually output for this conversion
specification, the behavior will not be guaranteed. Also, when the
number of parametersto be actually output is greater than the
conversion specification, the excess parameters are ignored.

(2) Description of conversion specifications

(& Fags
Flags specify modifications to the data to be output, such as addition
of asign. Thetypes of flag that can be specified, and their meanings,
are shown in table 10.33.

Table 10.33 Flag Typesand Their Meanings

Type Meaning

- If the number of converted data characters is less than the field width, the data will be
output left-justified within the field.

+ A plus or minus sign will be prefixed to the result of a signed conversion.

space If the first character of a signed conversion result is not a sign, a space will be prefixed to
the result. If the space and + flags are both specified, the space flag will be ignored.

The converted data is to be modified according to the conversion types described in
table 10.35.

(1) Forc,d, i, s, and u conversions
This flag is ignored.
(2) For o conversion
The converted data is prefixed with 0.
(3) For x or X conversion
The converted data is prefixed with Ox (or 0X)
(4) For e, E, f, g, and G conversions

A decimal point is output even if the converted data has no fractional part. With g and
G conversions, the 0 suffixed to the converted data cannot be removed.

Rev. 1.0, 08/00, page 359 of 890
HITACHI

(b) Field width

The number of charactersin the converted data to be output is
specified as a decimal number.

If the number of converted data charactersis less than the field width,
the datais prefixed with spaces up to the field width. (However, if '-'
is specified as aflag, spaces are suffixed to the data.)

If the number of converted data characters exceeds the field width, the
field width is extended to allow the converted result to be output.

If the field width specification begins with 0, 0 characters, not spaces,
are prefixed to the output data.

(c) Precision

The precision of the converted data is specified according to the type
of conversion, as described in table 10.35.

The precision is specified in the form of aperiod (.) followed by a
decimal integer. If the decimal integer is omitted, O is assumed to be
specified.

If the specified precision isincompatible with the field width
specification, the field width specification isignored.

The precision specification has the following meanings according to
the conversion type.

(1) Ford,i,o,u,x,and X conversions
The minimum number of digitsin the converted datais specified.

(2) Fore E, andf conversions
The number of digits after the decimal point in the converted datais
specified.

(3) Forgand G conversions
The maximum number of significant digitsin the converted datais
specified.

(4) For sconversion
The maximum number of printed digitsis specified.

Rev. 1.0, 08/00, page 360 of 890
HITACHI

(d) Parameter size specification

Ford,i,o,u,x, X, e E,f, g, and G conversions (see table 10.35),
specifies the size (short type, long type, or long double type) of the
datato be converted. In other conversions, this specification is
ignored. Table 10.34 shows the types of size specification and their
meanings.

Table 10.34 Parameter Size Specification Typesand Meanings

Type Meaning

h For d, i, 0, u, X, and X conversions, specifies that the data to be converted is of short
type or unsigned short type.

| For d, i, 0, u, X, and X conversions, specifies that the data to be converted is of long type,
unsigned long type, or double type.

L For e, E, f, g, and G conversions, specifies that the data to be converted is of long

double type.

(e) Conversion character
Specifies the format into which the datais to be converted.

If the data to be converted is structure or array type, or is a pointer
pointing to those types, the behavior will not be guaranteed except
when a character array is converted by s conversion or when a pointer
is converted by p conversion. Table 10.35 shows the conversion
character and conversion methods. If aletter which isnot shownin
thistable is specified as the conversion character, the behavior will
not be guaranteed. The behavior, if the other character is specified,
depends on the compiler.

Rev. 1.0, 08/00, page 361 of 890
HITACHI

Table 10.35 Conversion Characters and Conversion Methods

Data Type
Conversion Conversion Subject to
Character Type Conversion Method Conversion Notes on Precision
d d conversion int type data is converted to a signed int type The precision specification indicates the
- - - decimal string. d conversion and i - minimum number of characters output. If
i i conversion . int type
conversion have the same the number of converted data characters
specification. is less than the field width, the string is
- - - - prefixed with zeros. If the precision is
o o conversion int type data is converted to an int type .) .
unsigned octal string. omitted, 1 is asslumed. If convgrsmn and
output of data with a value of 0 is
u u conversion int type data is converted to an int type attempted with O specified as the
unsigned decimal string. precision, nothing will be output.
X x conversion int type data is converted to unsigned int type
hexadecimal. a, b, c, d, e, and f are
used as hexadecimal characters.
X X conversion int type data is converted to unsigned int type
hexadecimal. A, B, C, D, E, and F are
used as hexadecimal characters.
f f conversion double type data is converted to a double type The precision specification indicates the
decimal string with the format number of digits after the decimal point.
[-] ddd.ddd. When there are characters after the
decimal point, at least one digit is output
before the decimal point. When the
precision is omitted, 6 is assumed. When
0 is specified as the precision, the decimal
point and subsequent characters are not
output. The output data is rounded.
e e conversion double type data is converted to a double type The precision specification indicates the
decimal string with the format number of digits after the decimal point.
[-] d.ddde+dd. At least two digits are The format is such that one digit is output
output as the exponent. before the decimal point in the converted
E E conversion double type data is converted to a double type characterst gnd a number of digits equal
decimal string with the format to the precision are output aftc-':r'the'
[] d.dddE+dd. At least two digits are decimal point, When the precision is
output as the exponent. omlttgd, 6 is assume.d.. When 0 is
specified as the precision, characters after
the decimal point are not output.
The output data is rounded.
g g conversion Whether f conversion format output double type The precision specification indicates the
(or G or e conversion (or E conversion) ——————maximum number of significant digits in
G double type

conversion)

format output is performed is
determined by the value to be
converted and the precision value that
specifies the number of significant
digits. Then double type data is output.
If the exponent of the converted data is
less than —4, or larger than the
precision that indicates the number of
significant digits, conversion to e (or E)
format is performed.

the converted data.

Rev. 1.0, 08/00, page 362 of 890

HITACHI

Table 10.35 Conversion Charactersand Conversion Methods (cont)

Data Type

Conversion Conversion Subject to

Character Type Conversion Method Conversion Notes on Precision

c c conversion int type data is converted to unsigned int type The precision specification is invalid.
char data, with conversion to the
character corresponding to that data.

s s conversion The string pointed to by pointer to char Pointer to The precision specification indicates the
type are output up to the null character char type number of characters to be output. If the
or up to the number of characters precision is omitted, characters are output
specified by the precision. (Null up to, but not including, the null character
characters are not output. Space, in the string pointed to by the data. (Null
horizontal tab, and new line characters characters are not output. Space,
are not included in the converted horizontal tab, and new line characters
characters.) are not included in the converted

characters.)

p p conversion Assuming data as a pointer, conversion Pointer to The precision specification is invalid.
is performed to a string of compiler- void type
defined printable characters.

n no conversion Data is regarded as pointer to int type, Pointer to int

is performed.

and the number of characters output so type
far is set in the storage area pointed to
by that data.

%

no conversion
is performed.

% is output. None

(f) * specification for field width or precision

* can be specified as the field width or precision specification value.
In this case, the value of the parameter corresponding to the
conversion specification is used as the field width or precision
specification value. When this parameter has a negative field width,
flag '—' isinterpreted as being specified for the positive field width.
When the parameter has a negative precision, the precision is

interpreted as being omitted.

HITACHI

Rev. 1.0, 08/00, page 363 of 890

int fscanf(FILE *fp, const char *control[, ptr...])

Description:
Header file:

Return values:

Parameters:

Example:

Remarks:

Inputs data from a stream input/output file and converts it according to a format.
<stdio.h>
Normal: Number of dataitems successfully input and converted

Abnormal: Input data ends before input data conversion is performed: EOF

fp File pointer
control Pointer to string indicating format
ptr,... Pointer to storage areathat stores input data

#i ncl ude <stdi o. h>
FI LE *f p;
const char *control ="%l";
int ret,buffer[10];
ret=fscanf(fp, control, buffer);

The fscanf function inputs data from the stream input/output file indicated by
file pointer fp, converts and edits it according to the string indicating the format
pointed to by control, and stores the result in the storage area pointed to by ptr.

The format specifications for inputting data are shown below.

(1) Overview of formats

The string that represents the format is made up of the following three

kinds of string.

(8 Space characters
If aspace ('), horizontal tab (\t'), or new-line character ('\n') is
specified, processing is performed to skip to the next non-white-space
character in the input data.

(b) Ordinary characters
If acharacter that is neither one of the space characterslisted in
(a) nor % is specified, one input data character isinput. Theinput
character must match a character specified in the string that represents
the format.

Rev. 1.0, 08/00, page 364 of 890

HITACHI

(c) Conversion specification
A conversion specification is a string beginning with % that specifies
the method of converting the input data and storing it in the area
pointed to by the following argument. The conversion specification
format conforms to the following rules:

% [*] [Field width] [Converted data size] Conversion string

If thereis no pointer to the storage area that storesinput data for the
conversion specification in the format, the behavior will not be
guaranteed. Also, when a pointer to a storage area that stores input
data remains though the format is exhausted, that pointer isignored.

(2) Description of conversion specification

(@ * specification
Suppresses storage of the input data in the storage area pointed to by
the parameter.

(b) Fieldwidth
The maximum number of charactersin the datato beinput is
specified as a decimal number.

(c) Converted datasize
Ford,i,0,u,x, X, e E, and f conversions (see table 10.37), specifies
the size (short type, long type, or long double type) of the converted
data. In other conversions, this specification isignored. Table 10.36
shows the types of size specification and their meanings.

Table 10.36 Converted Data Size Specification Types and Meanings

Type Meaning

h For d, i, 0, u, X, and X conversions, specifies that the converted data is of short type.

| For d, i, 0, u, X, and X conversions, specifies that the converted data is of long type.
For e, E, and f conversions, specifies that the converted data is of double type.

L For e, E, and f conversions, specifies that the converted data is of long double type.

(d) Conversion character
Theinput datais converted according to the type of conversion
specified by the conversion character. However, processing is
terminated when awhite-space character is read, when a character for
which conversion is not permitted is read, or when the specified field
width has been exceeded.

Rev. 1.0, 08/00, page 365 of 890
HITACHI

Table 10.37 Conversion Specifiersand Conversion Methods

Conversion Conversion

Conversion Method

Data Type Subject
to Conversion

A decimal string is converted to integer type data.

Integer type

A decimal string with a sign prefixed, or a decimal string with u (U)

or | (L) suffixed is converted to integer type data. A string beginning
with Ox (or 0X) is interpreted as hexadecimal, and the string is converted
to int type data. A string beginning with O is interpreted as octal, and the
string is converted to int type data.

Integer type

An octal string is converted to integer type data.

Integer type

An unsigned decimal string is converted to integer type data.

Integer type

A hexadecimal string is converted to integer type data.
There is no difference in meaning between x conversion and X conversion.

Integer type

Characters are converted as a single string until a space, horizontal tab,
or new-line character is read. A null character is appended at the end of
the string. (The string in which the converted data is set must be large
enough to include the null character.)

Character type

One character is input. The input character is not skipped even if it is a
white-space character. To read only non-white-space characters, specify
%1s. If the field width is specified, the number of characters equivalent to
that specification are read. In this case, therefore, the storage area that
stores the converted data needs the specified size.

char type

A string indicating a floating-point number is converted to floating-point

the strtod function.

type data. There is no difference in meaning between the e conversion
and E conversion, or between the g conversion and G conversion.
The input format is a floating-point number that can be represented by

Floating-point type

A string converted by p conversion of the fprintf function is
converted to pointer type data.

Pointer to void type

Data input is not performed; the number of data characters input so far is

set.

Integer type

Specifier Type
d d conversion
i i conversion
o 0 conversion
u u conversion
X X conversion
X X conversion
s S conversion
c c conversion
e e conversion
E E conversion
f f conversion
g g conversion
G G conversion
p p conversion
n no conversion
is performed.
[[conversion

A sequence of characters is specified after [, followed by]. This character
sequence defines a sequence of characters comprising a string. If the
first character of the character sequence is not a circumflex (%), the input
data is input as a single string until a character not in this character
sequence is first read. If the first character is #, the input data is input as a
single string until a character which is in the character sequence following
the ~is first read. A null character is automatically appended at the end of
the input string (so the string in which the converted data is set must be
large enough to include the null character).

Character type

%

no conversion
is performed.

% is read.

None

If the conversion specifier is aletter not shown in table 10.37, the behavior will
not be guaranteed. For the other characters, the behavior isimplementation-
defined.

Rev. 1.0, 08/00, page 366 of 890

HITACHI

int printf(const char *control[, arg...])

Description:

Header file:

Return values:

Parameters:

Example:

Remarks:

Converts data according to aformat and outputs it to the standard output file
(stdout).

<stdio.h>
Normal: Number of characters converted and output
Abnormal: Negative value

control Pointer to string indicating format
arg,... Data to be output according to format

#i ncl ude <stdi o. h>

const char *control;

int ret;

char buffer[]="Hello World\n";
ret=printf(control, buffer);

The printf function converts and edits parameter arg according to the string that
indicates the format pointed to by control, and outputs the result to the standard
output file (stdout).

For details of the format specifications, see the description of the fprintf
function.

Rev. 1.0, 08/00, page 367 of 890
HITACHI

int scanf(const char *control[, ptr...])

Description:

Header file:

Return values:

Parameters:

Example:

Remarks:

Inputs data from the standard input file (stdin) and convertsit according to a
format.

<stdio.h>
Normal: Number of dataitems successfully input and converted
Abnormal: EOF

control Pointer to string indicating format
ptr,... Pointer to storage areathat holds input and converted data

#i ncl ude <stdi o. h>
const char *control ="%d";
int ret,buffer[10];
ret=scanf (control, buffer);

The scanf function inputs data from the standard input file (stdin), converts and
editsit according to the string indicating the format pointed to by control, and
stores the result in the storage area pointed to by ptr.

The scanf function returns the number of data items successfully input and
converted as the return value. EOF isreturned if the standard input file ends
before the first conversion.

For details of the format specifications, see the description of the fscanf
function.

For %e conversion, specify | for double type, and specify L for long double type.
The default typeis float.

Rev. 1.0, 08/00, page 368 of 890

HITACHI

int sprintf(char *s, const char *control[, arg...])

Description:
Header file:

Return values:

Parameters:

Example:

Remarks:

Converts data according to aformat and outputs it to the specified area.

<stdio.h>

Normal: Number of characters converted

Abnorma: 0O

S Pointer to storage areato which dataisto be output
control Pointer to string indicating format

arg,... Data to be output according to format

#i ncl ude <stdi o. h>

char *s;

const char *control;

int ret;

char buffer[]="Hello World\n";
ret=sprintf(s, control, buffer);

The sprintf function converts and edits parameter arg according to the string
that indicates the format pointed to by control, and outputs the result to the
storage area pointed to by s.

A null character is appended at the end of the converted and output string. This
null character is not included in the return value (number of characters output).

For details of the format specifications, see the description of the fprintf
function.

Rev. 1.0, 08/00, page 369 of 890
HITACHI

int sscanf(const char *s, const char *control[, ptr...])

Description: Inputs data from the specified storage area and convertsiit according to a
format.

Header file: <stdio.h>
Returnvalues: Normal: Number of dataitems successfully input and converted

Abnormal: EOF

Parameters: S Storage area containing data to be input

control Pointer to string indicating format

ptr,... Pointer to storage areathat holds input and converted data
Example: #i ncl ude <stdio. h>

const char *s, *control ="%l";
int ret,buffer[10];
ret=sscanf (s, control, buffer);

Remarks: The sscanf function inputs data from the storage area pointed to by s, converts
and edits it according to the string indicating the format pointed to by contral,
and stores the result in the storage area pointed to by ptr.

The sscanf function returns the number of dataitems successfully input and
converted. EOF isreturned when the input data ends before the first conversion.

For details of the format specifications, see the description of the fscanf
function.

Rev. 1.0, 08/00, page 370 of 890
HITACHI

int vfprintf(FILE *fp, const char *control, va_list arg)

Description:

Header file:

Return values:

Parameters:

Example:

Remarks:

Outputs a variable parameter list to the specified stream input/output file
according to aformat.

<stdio.h>
Normal: Number of characters converted and output

Abnormal: Negative value

fp File pointer
control Pointer to string indicating format
arg Argument list

#i ncl ude <stdarg. h>

#i ncl ude <stdio. h>

FI LE *fp;

const char *control ="%l";
int ret;

void prlist(int count ,...)

{

va_list ap;

int i;

va_start(ap, count);

for(i=0;i<count;i++)
ret=vfprintf(fp, control, ap);

va_end(ap);

}

The vfprintf function sequentially converts and edits a variable parameter list
according to the string that indicates the format pointed to by control, and
outputs the result to the stream input/output file indicated by fp.

The vfprintf function returns the number of dataitems converted and output, or
a negative value when an error occurs.

Within the vfprintf function, the va_end macro is not invoked.

For details of the format specifications, see the description of the fprintf
function.

Parameter arg, indicating the argument list, must be initialized beforehand by the
va_start and va_ar g macros.

Rev. 1.0, 08/00, page 371 of 890
HITACHI

int vprintf(const char *control, va_list arg)

Description:

Header file:

Return values:

Parameters:

Example:

Remarks:

Outputs a variable parameter list to the standard output file (stdout) according
to aformat.

<stdio.h>
Normal: Number of characters converted and output
Abnormal: Negative value

control Pointer to string indicating format
arg Argument list

#i ncl ude <stdarg. h>

#i ncl ude <stdi o. h>

FI LE *fp;

const char *control ="%l";
int ret;

void prlist(int count ,...)

{

va_list ap;

int i;

va_start(ap, count);

for(i=0;i<count;i++)
ret=vprintf(control, ap);

va_end(ap);

}

The vprintf function sequentially converts and edits a variable parameter list
according to the string that indicates the format pointed to by control, and
outputs the result to the standard output file.

The vprintf function returns the number of data items converted and output, or a
negative value if an error occurs.

Within the vprintf function, the va_end macro is not invoked.

For details of the format specifications, see the description of the fprintf
function.

Parameter arg, indicating the argument list, must be initialized beforehand
by theva_start and va_arg macros.

Rev. 1.0, 08/00, page 372 of 890

HITACHI

int vsprintf(char *s, const char *control, va list arg)

Description:

Header file:

Return values:

Parameters:

Example:

Remarks:

Outputs a variable parameter list to the specified storage area according to a
format.

<stdio.h>
Normal: Number of characters converted

Abnormal: Negative value

S Pointer to storage areato which dataisto be output
control Pointer to string indicating format
arg Argument list

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

char *s;

const char *control ="%l";
int ret;

void prlist(int count ,...)
{

va_list ap;

int i;

va_start(ap, count);

for(i=0;i<count;i++)
ret=vsprintf(s,control,buffer);

va_end(ap);

}

The vsprintf function sequentially converts and edits a variable parameter list
according to the string that indicates the format pointed to by control, and
outputs the result to the storage area pointed to by s.

A null character is appended at the end of the converted and output string. This
null character is not included in the return value (number of characters output).

For details of the format specifications, see the description of the fprintf
function.

Parameter arg, indicating the argument list, must be initialized beforehand
by theva_start and va_arg macros.

Rev. 1.0, 08/00, page 373 of 890
HITACHI

int fgetc(FILE *fp)
Description: Inputs one character from a stream input/output file.
Header file: <stdio.h>

Return values:. Normal: End-of-file: EOF
Otherwise: Input character

Abnormal: EOF

Parameters: fp File pointer
Example: #i ncl ude <stdio. h>
FI LE *f p;
int ret;

ret=fgetc(fp);

Error conditions:
When aread error occurs, the error indicator for that file is set.

Remarks: The fgetc function inputs one character from the stream input/output file
indicated by file pointer fp.

The fgetc function normally returns the input character, but returns EOF at end-
of-file or when an error occurs. At end-of-file, the end-of-file indicator for that
fileisset.

Rev. 1.0, 08/00, page 374 of 890
HITACHI

char *fgets(char *s, int n, FILE *fp)

Description:
Header file:

Return values:

Parameters:

Example:

Remarks:

Inputs a string from a stream input/output file.
<stdio.h>

Normal: End-of-file: NULL
Otherwise: s

Abnormal: NULL

S Pointer to storage areato which string is input
Number of bytes of storage area to which string isinput
fp File pointer

#i ncl ude <stdi o. h>
char *s, *ret;
int n;
FI LE *fp;
ret=fgets(s, n, fp);

The fgets function inputs a string from the stream input/output file indicated by

file pointer fp to the storage area pointed to by s.

The fgets function performs input up to the (n—1)th character or a new-line
character, or until end-of-file, and appends a null character at the end of the

input string.

The fgets function normally returns s, the pointer to the storage area to which
the string isinput, but returns a null pointer at end-of-file or if an error occurs.

The contents of the storage area pointed to by s do not change at end-of-file, but

will not be guaranteed when an error occurs.

Rev. 1.0, 08/00, page 375 of 890

HITACHI

int fputc (int ¢, FILE *fp)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Remarks:

Outputs one character to a stream input/output file.
<stdio.h>
Normal: Output character

Abnormal: EOF

(@]

Character to be output
fp File pointer

#i ncl ude <stdi o. h>

FI LE *f p;

int c, ret;
ret=fputc(c, fp);

When awrite error occurs, the error indicator for that fileis set.

The fputc function outputs character ¢ to the stream input/output file indicated
by file pointer fp.

The fputc function normally returns c, the output character, but returns EOF
when an error occurs.

Rev. 1.0, 08/00, page 376 of 890

HITACHI

int fputs (const char *s, FILE *fp)

Description:
Header file:

Return values:

Parameters:

Example:

Remarks:

Outputs a string to a stream input/output file.

<stdio.h>

Normal: 0

Abnormal: Nonzero

2}

Pointer to string to be output
fp File pointer

#i ncl ude <stdi o. h>

const char *s;

int ret;

FI LE *fp;
ret=fputs(s, fp);

The fputs function outputs the string up to the character preceding the null
character pointed to by sto the stream input/output file indicated by file pointer
fp. The null character indicating the end of the string is not output.

The fputs function normally returns zero, but returns nonzero when an error

Ooccurs.

HITACHI

Rev. 1.0, 08/00, page 377 of 890

int getc (FILE *fp)
Description: Inputs one character from a stream input/output file.
Header file: <stdio.h>

Return values:. Normal: End-of-file: EOF
Otherwise: Input character

Abnormal: EOF

Parameters: fp File pointer
Example: #i ncl ude <stdio. h>
FI LE *f p;
int ret;

ret=getc(fp);

Error conditions:
When aread error occurs, the error indicator for that file is set.

Remarks: The getc function inputs one character from the stream input/output file
indicated by file pointer fp.

The getc function normally returns the input character, but returns EOF at end-
of-file or if an error occurs. At end-of-file, the end-of-file indicator for that file
iS set.

Rev. 1.0, 08/00, page 378 of 890
HITACHI

int getchar (void)

Description:
Header file:

Return values:

Example:

Error conditions:

Remarks:

Inputs one character from the standard input file (stdin).
<stdio.h>

Normal: End-of-file: EOF
Otherwise: Input character

Abnormal: EOF

#i ncl ude <stdi o. h>
int ret;
ret =getchar();

When aread error occurs, the error indicator for that file is set.
The getchar function inputs one character from the standard input file (stdin).

The getchar function normally returns the input character, but returns EOF at
end-of-file or if an error occurs. At end-of-file, the end-of-file indicator for that
fileisset.

Rev. 1.0, 08/00, page 379 of 890
HITACHI

char *gets (char *s)
Description: Inputs a string from the standard input file (stdin).
Header file: <stdio.h>

Return values:. Normal: End-of-file: NULL
Otherwise: s

Abnormal: NULL
Parameters: S Pointer to storage areato which string isinput

Example: #i ncl ude <stdio. h>
char *ret, *s;
ret=gets(s);

Remarks: The gets function inputs a string from the standard input file (stdin) to the
storage area starting at s.

The gets function inputs characters up to end-of-file or until a new-line character
isinput, and appends a null character instead of a new-line character.

The gets function normally returns s, the pointer to the storage area to which the
string isinput, but returns a null pointer at the end of the standard input file or
when an error occurs.

The contents of the storage area pointed to by s do not change at the end of the
standard input file, but will not be guaranteed when an error occurs.

Rev. 1.0, 08/00, page 380 of 890
HITACHI

int *putc (int ¢, FILE *fp)

Description:
Header file:

Return values:

Parameters:

Example:

Error conditions:

Remarks:

Outputs one character to a stream input/output file.
<stdio.h>

Normal: Output character

Abnormal: EOF

c Character to be output
fp File pointer

#i ncl ude <stdi o. h>

FI LE *f p;

int c, ret;
ret=putc(c, fp);

When awrite error occurs, the error indicator for that fileis set.

The putc function outputs character ¢ to the stream input/output file indicated by
file pointer fp.

The putc function normally returns c, the output character, but returns EOF
when an error occurs.

Rev. 1.0, 08/00, page 381 of 890
HITACHI

int putchar (int c)
Description: Outputs one character to the standard output file (stdout).
Header file: <stdio.h>

Returnvalues: Normal: Output character
Abnormal: EOF

Parameters: c Character to be output

Example: #i ncl ude <stdio. h>
int c, ret;
ret =put char (c);

Error conditions:
When awrite error occurs, the error indicator for that fileis set.

Remarks: The putchar function outputs character c to the standard output file (stdout).

The putchar function normally returns c, the output character, but returns EOF
when an error occurs.

int puts(const char *s)
Description: Outputs a string to the standard output file (stdout).
Header file: <stdio.h>

Return values. Normal: 0
Abnormal: Nonzero

Parameters: s Pointer to string to be output
Example: #i ncl ude <stdio. h>

const char *s;

int c, ret;

ret=puts(s);

Remarks: The puts function outputs the string pointed to by s to the standard output file
(stdout). The null character indicating the end of the string is not output, but a
new-line character is output instead.

The puts function normally returns zero, but returns nonzero when an error
occurs.

Rev. 1.0, 08/00, page 382 of 890
HITACHI

int ungetc (int ¢, FILE *fp)

Description:
Header file:

Return values:

Parameters:

Example:

Remarks:

Returns one character to a stream input/output file.
<stdio.h>

Normal: Returned character

Abnormal: EOF

Character to be returned
fp File pointer

(@]

#i ncl ude <stdi o. h>

int c, ret;

FI LE *f p;
ret=ungetc(c, fp);

The ungetc function returns character ¢ to the stream input/output file indicated
by file pointer fp. Unless the fflush, fseek, or rewind function is called, this
returned character will be the next input data.

The ungetc function normally returns character ¢, but returns EOF if an error
occurs.

The behavior will not be guaranteed when the ungetc function is called more
than once without intervening fflush, fseek, or rewind function execution.
When the ungetc function is executed, the current file position indicator for that
fileis moved back one position; however, when this file position indicator has
already been positioned at the beginning of the file, its value will not be
guaranteed.

Rev. 1.0, 08/00, page 383 of 890
HITACHI

size t fread(void *ptr, size t size, size t n, FILE *fp)
Description: Inputs data from a stream input/output file to the specified storage area.

Header file: <stdio.h>

Returnvalues: Normal: Whensizeor nis0: 0
When size and n are both nonzero: Number of successfully input
members
Abnormal: [
Parameters: ptr Pointer to storage areato which dataisinput
size Number of bytesin one member
n Number of membersto be input
fp File pointer
Example: #i ncl ude <stdio. h>
void *ptr;

size_t size;
size_t n, ret;
FI LE *f p;
ret=fread(ptr, size, n, fp);

Remarks: The fread function inputs n members whose size is specified by size, from the
stream input/output file indicated by file pointer fp, into the storage area pointed
to by ptr. Thefile position indicator for the file is advanced by the number of
bytesinput.

The fread function returns the number of members successfully input, whichis
normally the same asthe value of n. However, at end-of-file or when an error
occurs, the number of members successfully input so far is returned, and then
the return value will be lessthan n. Theferror and feof functions should be
used to distinguish between end-of-file and error occurrence.

When the value of size or n is zero, zero isreturned as the return value and the
contents of the storage area pointed to by ptr are unchanged. When an error
occurs, or when only a part of the members can be input, the file position
indicator will not be guaranteed.

Rev. 1.0, 08/00, page 384 of 890
HITACHI

size t fwrite(const void *ptr, size t size, size t n, FILE *fp)

Description:
Header file:

Return values:

Parameters:

Example:

Remarks:

Outputs data from a memory area to a stream input/output file.

<stdio.h>

Normal: Number of successfully output members
Abnorma: 0O

ptr Pointer to storage area storing data to be output
size Number of bytesin one member

n Number of membersto be input

fp File pointer

#i ncl ude <stdio. h>
const void *ptr;
size_t size;
size_t n, ret;
FI LE *f p;
ret=fwite(ptr, size, n, fp);

The fwrite function inputs n members whose size is specified by size, from the
storage area pointed to by ptr, to the stream input/output file indicated by file
pointer fp. Thefile position indicator for the file is advanced by the number of
bytes output.

The fwrite function returns the number of members successfully output, which
isnormally the same as the value of n. However, when an error occurs, the
number of members successfully output so far isreturned, and then the return
value will be less than n.

When an error occurs, the file position indicator will not be guaranteed.

Rev. 1.0, 08/00, page 385 of 890
HITACHI

int fseek(FILE *fp, long offset, int type)

Description: Shifts the current read/write position in a stream input/output file.
Header file: <stdio.h>

Returnvalues: Normal: 0

Abnormal: Nonzero

Parameters: fp File pointer
offset Offset from position specified by type of offset
type Type of offset
Example: #i ncl ude <stdio. h>
FI LE *f p;
| ong of fset;

int type, ret;
ret=fseek(fp, offset, type);

Remarks: The fseek function shifts the current read/write position, which fp indicates, in
the stream input/output file by the offset bytes from the position specified by
type (the type of offset).

The types of offset are shown in table 10.38.
The fseek function normally returns zero, but returns nonzero in response to an
invalid request.

Table 10.38 Types of Offset

Offset Type Meaning

SEEK_SET Shifts to a position which is located offset bytes away from the beginning of the
file. The value specified by offset must be zero or positive.

SEEK_CUR Shifts to a position which is located offset bytes away from the current position in
the file. The shift is toward the end of the file if the value specified by offset is
positive, and toward the beginning of the file if negative.

SEEK_END Shifts to a position which is located offset bytes away from end-of-file. The value
specified by offset must be zero or negative.

In the case of atext file, the type of offset must be SEEK_SET and offset must
be zero or the value returned by the ftell function for that file. Note also that
calling the fseek function cancels the effect of the ungetc function.

Rev. 1.0, 08/00, page 386 of 890
HITACHI

long ftell(FILE *fp)

Description:
Header file:

Return values:

Parameters:

Example:

Remarks:

Obtains the current read/write position in a stream input/output file.

<stdio.h>

Normal: Current file position indicator position (text file)
Number of bytes from beginning of file to current position (binary
file)

Abnormal: [

fp File pointer

#i ncl ude <stdio. h>
FI LE *f p;
| ong ret;

ret=ftell (fp);

The ftell function obtains the current read/write position, which fp indicates, in
the stream input/output file.

For abinary file, the ftell function returns the number of bytes from the
beginning of the file to the current position. For atext file, it returns, as the
position of the file position indicator, an implementation-defined value that can
be used by the fseek function.

When the ftell function is used twice for atext file, the difference in the return
values will not necessarily represent the actual distance in thefile.

Rev. 1.0, 08/00, page 387 of 890
HITACHI

void rewind(FILE *fp)

Description:

Header file:
Parameters:

Example:

Remarks:

Shifts the current read/write position in a stream input/output file to the
beginning of thefile.

<stdio.h>
fp File pointer

#i ncl ude <stdi o. h>
FI LE *fp;
rewi nd(fp);

The rewind function shifts the current read/write position in the stream
input/output file indicated by file pointer fp, to the beginning of the file.

The rewind function clears the end-